A136123 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k maximal strings of increasing consecutive integers (0<=k<=floor(n/2)).
1, 1, 1, 1, 3, 3, 11, 12, 1, 53, 56, 11, 309, 321, 87, 3, 2119, 2175, 693, 53, 16687, 17008, 5934, 680, 11, 148329, 150504, 55674, 8064, 309, 1468457, 1485465, 572650, 96370, 5805, 53, 16019531, 16170035, 6429470, 1200070, 95575, 2119
Offset: 0
Examples
T(3,0)=3 because we have 132, 213 and 321; T(6,3)=3 because we have 125634, 341256, 563412. Triangle starts: 1; 1; 1, 1; 3, 3; 11, 12, 1; 53, 56, 11; 309, 321, 87, 3; ...
References
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 264, Table 7.6.1.
Crossrefs
Programs
-
Maple
G:=Sum(factorial(n)*(((1-t)*x^2-x)/((1-t)*x^2-1))^n, n=0..infinity): Gser:= simplify(series(G,x=0,13)): for n from 0 to 11 do P[n]:=sort(coeff(Gser,x,n)) end do: for n from 0 to 11 do seq(coeff(P[n],t,j),j=0..floor((1/2)*n)) end do; # yields sequence in triangular form # alternative A136123 := proc(n,k) add( x^i*( ((1-y)*x-1)/((1-y)*x^2-1) )^i*i!,i=0..n+1) ; coeftayl(%,x=0,n) ; coeftayl(%,y=0,k) ; end proc: seq(seq( A136123(n,k),k=0..floor(n/2)),n=0..12) ; # R. J. Mathar, Jul 01 2022
-
Mathematica
T[n_, k_] := Sum[x^i*(((1-y)*x-1)/((1-y)*x^2-1))^i*i!, {i, 0, n+1}] // SeriesCoefficient[#, {x, 0, n}]& // SeriesCoefficient[#, {y, 0, k}]&; Table[Table[T[n, k], {k, 0, Floor[n/2]}], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 09 2023, after R. J. Mathar *)
Formula
G.f.: G(x,t) = Sum_{n>=0} n!*(((1-t)*x^2 - x)/((1-t)*x^2-1))^n. - Vladeta Jovovic
Comments