cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001300 Number of ways of making change for n cents using coins of 1, 5, 10, 25, 50 cents.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 9, 9, 9, 9, 9, 13, 13, 13, 13, 13, 18, 18, 18, 18, 18, 24, 24, 24, 24, 24, 31, 31, 31, 31, 31, 39, 39, 39, 39, 39, 50, 50, 50, 50, 50, 62, 62, 62, 62, 62, 77, 77, 77
Offset: 0

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

Number of partitions of n into parts 1, 5, 10, 25, and 50. - Joerg Arndt, May 10 2014
a(n) = A001299(n) for n < 50; a(n) = A169718(n) for n < 100. - Reinhard Zumkeller, Dec 15 2013

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1, Problems 1 and 2.

Crossrefs

Programs

  • Haskell
    a001300 = p [1,5,10,25,50] where
       p _          0 = 1
       p []         _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Dec 15 2013
    
  • Maple
    1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50));
  • Mathematica
    CoefficientList[ Series[ 1 / ((1 - x)(1 - x^5)(1 - x^10)(1 - x^25)(1 - x^50)), {x, 0, 65} ], x ]
  • PARI
    a(n)=floor(((n\5)^4+38*(n\5)^3+476*(n\5)^2+2185*(n\5)+3735)/2400+(n\5+1)*(-1)^(n\5)/160+(n\5\5+1)*[0,0,1,0,-1][n\5%5+1]/10) \\ Tani Akinari, May 10 2014

Formula

G.f.: 1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50)).