cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001301 Number of ways of making change for n cents using coins of 1, 2, 5, 10, 25 cents.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 40, 43, 49, 52, 58, 65, 71, 78, 84, 91, 102, 109, 120, 127, 138, 151, 162, 175, 186, 199, 217, 230, 248, 261, 279, 300, 318, 339, 357, 378, 406, 427, 455, 476, 504, 536, 564, 596, 624, 656
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 2, 5, 10, and 25. - Joerg Arndt, Sep 05 2014

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.

Programs

  • Maple
    M := Matrix(43, (i,j)-> if (i=j-1) or (j=1 and member(i, [1, 2, 5, 8, 10, 13, 16, 17, 25, 28, 31, 32, 36, 37, 40, 43])) then 1 elif j=1 and member(i, [3, 6, 7, 11, 12, 15, 18, 26, 27, 30, 33, 35, 38, 41, 42]) then -1 else 0 fi); a := n -> (M^(n))[1,1]; seq (a(n), n=0..51); # Alois P. Heinz, Jul 25 2008
  • Mathematica
    CoefficientList[ Series[ 1 / ((1 - x)(1 - x^2)(1 - x^5)(1 - x^10)(1 - x^25)), {x, 0, 55} ], x ]
    Table[Length[FrobeniusSolve[{1,2,5,10,25},n]],{n,0,60}] (* Harvey P. Dale, Jan 19 2020 *)
  • PARI
    Vec(1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^25)) + O(x^100)) \\ Michel Marcus, Sep 05 2014

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^25)).