A001341 Expansion of e.g.f. 6*exp(x)/(1-x)^4.
6, 30, 174, 1158, 8742, 74046, 696750, 7219974, 81762438, 1005151902, 13336264686, 189992451270, 2893180308774, 46904155833918, 806663460996462, 14669947577257926, 281298999630211590, 5672559830998316574, 120014233288249367598, 2658221288671765756422
Offset: 0
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- E. Biondi, L. Divieti, and G. Guardabassi, Counting paths, circuits, chains and cycles in graphs: A unified approach, Canad. J. Math. 22 1970 22-35.
- Philip Feinsilver and John McSorley, Zeons, Permanents, the Johnson Scheme, and Generalized Derangements, International Journal of Combinatorics, Volume 2011, Article ID 539030, 29 pages.
Crossrefs
Cf. A095000.
Programs
-
Mathematica
nn = 20; Range[0, nn]! CoefficientList[Series[6*Exp[x]/(1 - x)^4, {x, 0, nn}], x] (* T. D. Noe, Jun 28 2012 *)
-
PARI
my(x='x+O('x^66)); Vec(serlaplace(6*exp(x)/(1-x)^4)) \\ Joerg Arndt, May 09 2013
Formula
a(n) = ceiling( n!*(n^3 + 3*n^2 + 5*n + 2)*exp(1) ). - Mark van Hoeij, Nov 11 2009
G.f.: Q(0)*(1-x)^2/x^3 - 2/x + 1/x^2 - 1/x^3, where Q(k)= 1 + (2*k + 1)*x/( 1 - x - 2*x*(1-x)*(k+1)/(2*x*(k+1) + (1-x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 09 2013
a(n) = 6 * A095000(n). - Alois P. Heinz, Jan 17 2025
Extensions
Error in definition corrected Jan 30 2008
More terms from N. J. A. Sloane, Jan 30 2008