A001348 Mersenne numbers: 2^p - 1, where p is prime.
3, 7, 31, 127, 2047, 8191, 131071, 524287, 8388607, 536870911, 2147483647, 137438953471, 2199023255551, 8796093022207, 140737488355327, 9007199254740991, 576460752303423487, 2305843009213693951, 147573952589676412927, 2361183241434822606847
Offset: 1
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 16.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 47.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..100
- Raymond Clare Archibald, Mersenne's Numbers, Scripta Mathematica, Vol. 3 (1935), pp. 112-119.
- John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman and S. S. Wagstaff, Jr., Cunningham Project [Factorizations of b^n +- 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers]
- C. K. Caldwell, Mersenne Primes
- Will Edgington, Mersenne Page> [from Internet Archive Wayback Machine].
- Graham Everest, Shaun Stevens, Duncan Tamsett and Tom Ward, Primes generated by recurrence sequences, Amer. Math. Monthly, Vol. 114, No. 5 (2007), pp. 417-431.
- Paul Garrett, Lucas-Lehmer criterion for primality of Mersenne numbers, 2010.
- Jiří Klaška, A Simple Proof of Skula's Theorem on Prime Power Divisors of Mersenne Numbers, J. Int. Seq., Vol. 25 (2022), Article 22.4.3.
- Gabriel Lapointe, On finding the smallest happy numbers of any heights, arXiv:1904.12032 [math.NT], 2019.
- Romeo Meštrović, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012.
- Anthony G. Shannon, Hakan Akkuş, Yeşim Aküzüm, Ömür Deveci, and Engin Özkan, A partial recurrence Fibonacci link, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 530-537. See Table 1, p. 531.
- Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
- Thesaurus.maths.org, Mersenne Number.
- Gérard Villemin's Almanach of Numbers, Nombre de Mersenne.
- Eric Wegrzynowski, Nombres de Mersenne. [from Internet Archive Wayback Machine]
- K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math., Vol. 3 (1892), pp. 265-284.
Crossrefs
Programs
-
Magma
[2^NthPrime(n)-1: n in [1..30]]; // Vincenzo Librandi, Feb 04 2016
-
Maple
A001348 := n -> 2^(ithprime(n))-1: seq (A001348(n), n=1..18);
-
Mathematica
Table[2^Prime[n]-1, {n, 20}] (* Vladimir Joseph Stephan Orlovsky, Aug 26 2008 *)
-
PARI
a(n)=1<
Charles R Greathouse IV, Jun 10 2011 -
Python
from sympy import prime def a(n): return 2**prime(n)-1 print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Mar 28 2022
Formula
a(n) = 2^A000040(n) - 1, n >= 1. - Wolfdieter Lang, Oct 26 2014
Sum_{n>=1} 1/a(n) = A262153. - Amiram Eldar, Nov 20 2020
Product_{n>=1} (1 - 1/a(n)) = A184085. - Amiram Eldar, Nov 22 2022
Comments