A001362 Number of ways of making change for n cents using coins of 1, 2, 4, 10 cents.
1, 1, 2, 2, 4, 4, 6, 6, 9, 9, 13, 13, 18, 18, 24, 24, 31, 31, 39, 39, 49, 49, 60, 60, 73, 73, 87, 87, 103, 103, 121, 121, 141, 141, 163, 163, 187, 187, 213, 213, 242, 242, 273, 273, 307, 307, 343, 343, 382, 382, 424, 424, 469, 469, 517, 517, 568, 568, 622, 622
Offset: 0
Keywords
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
- G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 186
- Index entries for sequences related to making change.
- Index entries for linear recurrences with constant coefficients, signature (1, 1, -1, 1, -1, -1, 1, 0, 0, 1, -1, -1, 1, -1, 1, 1, -1).
Crossrefs
Twice A001304.
Programs
-
Maple
1/(1-x)/(1-x^2)/(1-x^4)/(1-x^10): seq(coeff(series(%,x,n+1),x,n), n=0..80);
-
Mathematica
nn = 1000; CoefficientList[Series[1/((1 - x^1) (1 - x^2) (1 - x^4) (1 - x^10)), {x, 0, nn}], x] (* T. D. Noe, Jun 28 2012 *) Table[Length[FrobeniusSolve[{1,2,4,10},n]],{n,0,60}] (* Harvey P. Dale, May 20 2021 *)
-
PARI
a(n)=floor((n\2+8)*(2*(n\2)^2+11*(n\2)+18)/120) \\ Tani Akinari, May 14 2014
Formula
G.f.: 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^10)).
Comments