cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001362 Number of ways of making change for n cents using coins of 1, 2, 4, 10 cents.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 6, 6, 9, 9, 13, 13, 18, 18, 24, 24, 31, 31, 39, 39, 49, 49, 60, 60, 73, 73, 87, 87, 103, 103, 121, 121, 141, 141, 163, 163, 187, 187, 213, 213, 242, 242, 273, 273, 307, 307, 343, 343, 382, 382, 424, 424, 469, 469, 517, 517, 568, 568, 622, 622
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 2, 4, and 10. - Joerg Arndt, Sep 05 2014

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.

Crossrefs

Twice A001304.

Programs

  • Maple
    1/(1-x)/(1-x^2)/(1-x^4)/(1-x^10): seq(coeff(series(%,x,n+1),x,n), n=0..80);
  • Mathematica
    nn = 1000; CoefficientList[Series[1/((1 - x^1) (1 - x^2) (1 - x^4) (1 - x^10)), {x, 0, nn}], x] (* T. D. Noe, Jun 28 2012 *)
    Table[Length[FrobeniusSolve[{1,2,4,10},n]],{n,0,60}] (* Harvey P. Dale, May 20 2021 *)
  • PARI
    a(n)=floor((n\2+8)*(2*(n\2)^2+11*(n\2)+18)/120) \\ Tani Akinari, May 14 2014

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^10)).