cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001373 Number of functional digraphs (digraphs of functions on n nodes where every node has outdegree 1 and loops of length 1 are forbidden).

Original entry on oeis.org

1, 0, 1, 2, 6, 13, 40, 100, 291, 797, 2273, 6389, 18264, 51916, 148666, 425529, 1221900, 3511507, 10111043, 29142941, 84112009, 243000149, 702758065, 2034150215, 5892907566, 17084615940, 49567063847, 143902155133, 418032946298, 1215076634226, 3533715961160, 10282042126394, 29931877173282, 87173224346464, 253989569994664
Offset: 0

Views

Author

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 70, Table 3.4.1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=1 of A329228.

Programs

  • Mathematica
    Needs["Combinatorica`];
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];c=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,2,30}]],1];CoefficientList[Series[Product[1/(1-x^i)^c[[i]],{i,1,nn-1}],{x,0,nn}],x]  (* after code given by Robert A. Russell in A000081 *) (* Geoffrey Critzer, Oct 12 2012 *)
  • PARI
    N=66;  A=vector(N+1, j, 1);
    for (n=1, N, A[n+1] = 1/n * sum(k=1,n, sumdiv(k,d, d*A[d]) * A[n-k+1] ) );
    v0000081=concat([0], A); \\ A000081
    x='x+O('x^N);  T = Ser(v0000081);
    gf = x/T  / prod(n=1,N, 1 - subst(T,'x,'x^n) );
    v001373 = Vec(gf) \\ Joerg Arndt, Apr 17 2014

Formula

Euler transform of A002862.
G.f.: (x/T(x)) / Product_{n>=1} ( 1 - T(x^n) ) where T(x) is the g.f. of A000081, see the Read reference and the PARI code. - Joerg Arndt, Apr 17 2014

Extensions

Sequence extended by Paul Zimmermann
More terms and better description from Christian G. Bower
More terms added by Joerg Arndt, Apr 17 2014