cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001383 Number of n-node rooted trees of height at most 3.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 15, 29, 53, 98, 177, 319, 565, 1001, 1749, 3047, 5264, 9054, 15467, 26320, 44532, 75054, 125904, 210413, 350215, 580901, 960035, 1581534, 2596913, 4251486, 6939635, 11296231, 18337815, 29692431, 47956995, 77271074, 124212966
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is also the number of n-vertex graphs that do not contain a P_4, C_4, or K_4 as induced subgraph (K_4-free trivially perfect graphs, cf. A123467). - Falk Hüffner, Jan 10 2016

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    s[ 2 ] := x/product('1-x^i','i'=1..30); # G.f. for trees of ht <=2, A000041
    for k from 3 to 12 do # gets g.f. for trees of ht <= 3,4,5,...
    s[ k ] := series(x/product('(1-x^i)^coeff(s[ k-1 ],x,i)','i'=1..30),x,31); od:
    # For Maple program see link in A000235.
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: A000041:= etr(n-> 1): a:= n->`if`(n=0,1, etr(k-> A000041(k-1))(n-1)): seq(a(n), n=0..40);  # Alois P. Heinz, Sep 08 2008
  • Mathematica
    m = 36; CoefficientList[ Series[x*Product[(1 - x^k)^(-PartitionsP[k - 1]), {k, 1, m}], {x, 0, m}], x] // Rest // Prepend[#, 1] & (* Jean-François Alcover, Jul 05 2011, after g.f. *)
  • PARI
    {a(n)=polcoeff(1+x*exp(sum(m=1,n,x^m/m/prod(k=1,n\m+1,1-x^(m*k)+x*O(x^n)))),n)} \\ Paul D. Hanna, Nov 01 2012

Formula

G.f.: S[ 3 ] := x*Product (1 - x^k)^(-p(k-1)), where p(k) = number of partitions of k.
a(n+1) is the Euler transform of p(n-1), where p() = A000041 is the partition function. - Franklin T. Adams-Watters, Mar 01 2006
G.f.: 1 + x*exp( Sum_{n>=1} x^n/n * Product_{k>=1} 1/(1 - x^(n*k)) ). - Paul D. Hanna, Nov 01 2012