A001383 Number of n-node rooted trees of height at most 3.
1, 1, 1, 2, 4, 8, 15, 29, 53, 98, 177, 319, 565, 1001, 1749, 3047, 5264, 9054, 15467, 26320, 44532, 75054, 125904, 210413, 350215, 580901, 960035, 1581534, 2596913, 4251486, 6939635, 11296231, 18337815, 29692431, 47956995, 77271074, 124212966
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- N. J. A. Sloane, Table of n, a(n) for n=0..200
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 62
- J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478.
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
Programs
-
Maple
s[ 2 ] := x/product('1-x^i','i'=1..30); # G.f. for trees of ht <=2, A000041 for k from 3 to 12 do # gets g.f. for trees of ht <= 3,4,5,... s[ k ] := series(x/product('(1-x^i)^coeff(s[ k-1 ],x,i)','i'=1..30),x,31); od: # For Maple program see link in A000235. with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: A000041:= etr(n-> 1): a:= n->`if`(n=0,1, etr(k-> A000041(k-1))(n-1)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
-
Mathematica
m = 36; CoefficientList[ Series[x*Product[(1 - x^k)^(-PartitionsP[k - 1]), {k, 1, m}], {x, 0, m}], x] // Rest // Prepend[#, 1] & (* Jean-François Alcover, Jul 05 2011, after g.f. *)
-
PARI
{a(n)=polcoeff(1+x*exp(sum(m=1,n,x^m/m/prod(k=1,n\m+1,1-x^(m*k)+x*O(x^n)))),n)} \\ Paul D. Hanna, Nov 01 2012
Formula
G.f.: S[ 3 ] := x*Product (1 - x^k)^(-p(k-1)), where p(k) = number of partitions of k.
a(n+1) is the Euler transform of p(n-1), where p() = A000041 is the partition function. - Franklin T. Adams-Watters, Mar 01 2006
G.f.: 1 + x*exp( Sum_{n>=1} x^n/n * Product_{k>=1} 1/(1 - x^(n*k)) ). - Paul D. Hanna, Nov 01 2012
Comments