cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A001970 Functional determinants; partitions of partitions; Euler transform applied twice to all 1's sequence.

Original entry on oeis.org

1, 1, 3, 6, 14, 27, 58, 111, 223, 424, 817, 1527, 2870, 5279, 9710, 17622, 31877, 57100, 101887, 180406, 318106, 557453, 972796, 1688797, 2920123, 5026410, 8619551, 14722230, 25057499, 42494975, 71832114, 121024876, 203286806, 340435588, 568496753, 946695386
Offset: 0

Views

Author

Keywords

Comments

a(n) = number of partitions of n, when for each k there are p(k) different copies of part k. E.g., let the parts be 1, 2a, 2b, 3a, 3b, 3c, 4a, 4b, 4c, 4d, 4e, ... Then the a(4) = 14 partitions of 4 are: 4 = 4a = 4b = ... = 4e = 3a+1 = 3b+1 = 3c+1 = 2a+2a = 2a+2b = 2b+2b = 2a+1 = 2b+1 = 1+1+1+1.
Equivalently (Cayley), a(n) = number of 2-dimensional partitions of n. E.g., for n = 4 we have:
4 31 3 22 2 211 21 2 2 1111 111 11 11 1
1 2 1 11 1 1 11 1 1
1 1 1
1
Also total number of different species of singularity for conjugate functions with n letters (Sylvester).
According to [Belmans], this sequence gives "[t]he number of Segre symbols for the intersection of two quadrics in a fixed dimension". - Eric M. Schmidt, Sep 02 2017
From Gus Wiseman, Jul 30 2022: (Start)
Also the number of non-isomorphic multiset partitions of weight n with all constant blocks. The strict case is A089259. For example, non-isomorphic representatives of the a(1) = 1 through a(3) = 6 multiset partitions are:
{{1}} {{1,1}} {{1,1,1}}
{{1},{1}} {{1},{1,1}}
{{1},{2}} {{1},{2,2}}
{{1},{1},{1}}
{{1},{2},{2}}
{{1},{2},{3}}
A000688 counts factorizations into prime powers.
A007716 counts non-isomorphic multiset partitions by weight.
A279784 counts twice-partitions of type PPR, factorizations A295935.
Constant partitions are ranked by prime-powers: A000961, A023894, A054685, A246655, A355743.
(End)

Examples

			G.f. = 1 + x + 3*x^2 + 6*x^3 + 15*x^4 + 28*x^5 + 66*x^6 + 122*x^7 + ...
a(3) = 6 because we have (111) = (111) = (11)(1) = (1)(1)(1), (12) = (12) = (1)(2), (3) = (3).
The a(4)=14 multiset partitions whose total sum of parts is 4 are:
((4)),
((13)), ((1)(3)),
((22)), ((2)(2)),
((112)), ((1)(12)), ((2)(11)), ((1)(1)(2)),
((1111)), ((1)(111)), ((11)(11)), ((1)(1)(11)), ((1)(1)(1)(1)). - _Gus Wiseman_, Dec 19 2016
		

References

  • A. Cayley, Recherches sur les matrices dont les termes sont des fonctions linéaires d'une seule indéterminée, J. Reine angew. Math., 50 (1855), 313-317; Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, p. 219.
  • V. A. Liskovets, Counting rooted initially connected directed graphs. Vesci Akad. Nauk. BSSR, ser. fiz.-mat., No 5, 23-32 (1969), MR44 #3927.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. J. Sylvester, An Enumeration of the Contacts of Lines and Surfaces of the Second Order, Phil. Mag. 1 (1851), 119-140. Reprinted in Collected Papers, Vol. 1. See p. 239, where one finds a(n)-2, but with errors.
  • J. J. Sylvester, Note on the 'Enumeration of the Contacts of Lines and Surfaces of the Second Order', Phil. Mag., Vol. VII (1854), pp. 331-334. Reprinted in Collected Papers, Vol. 2, pp. 30-33.

Crossrefs

Related to A001383 via generating function.
The multiplicative version (factorizations) is A050336.
The ordered version (sequences of partitions) is A055887.
Row-sums of A061260.
Main diagonal of A055885.
We have A271619(n) <= a(n) <= A063834(n).
Column k=3 of A290353.
The strict case is A316980.
Cf. A089300.

Programs

  • Haskell
    Following Vladeta Jovovic:
    a001970 n = a001970_list !! (n-1)
    a001970_list = 1 : f 1 [1] where
       f x ys = y : f (x + 1) (y : ys) where
                y = sum (zipWith (*) ys a061259_list) `div` x
    -- Reinhard Zumkeller, Oct 31 2015
    
  • Maple
    with(combstruct); SetSetSetU := [T, {T=Set(S), S=Set(U,card >= 1), U=Set(Z,card >=1)},unlabeled];
    # second Maple program:
    with(numtheory): with(combinat):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          numbpart(d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 19 2016
  • Mathematica
    m = 32; f[x_] = Product[1/(1-x^k)^PartitionsP[k], {k, 1, m}]; CoefficientList[ Series[f[x], {x, 0, m-1}], x] (* Jean-François Alcover, Jul 19 2011, after g.f. *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - numbpart(k) * x^k + x * O(x^n)), n))}; /* Michael Somos, Dec 20 2016 */
    
  • Python
    from sympy.core.cache import cacheit
    from sympy import npartitions, divisors
    @cacheit
    def a(n): return 1 if n == 0 else sum([sum([d*npartitions(d) for d in divisors(j)])*a(n - j) for j in range(1, n + 1)]) / n
    [a(n) for n in range(51)]  # Indranil Ghosh, Aug 19 2017, after Maple code
    # (Sage) # uses[EulerTransform from A166861]
    b = BinaryRecurrenceSequence(0, 1, 1)
    a = EulerTransform(EulerTransform(b))
    print([a(n) for n in range(36)]) # Peter Luschny, Nov 17 2022

Formula

G.f.: Product_{k >= 1} 1/(1-x^k)^p(k), where p(k) = number of partitions of k = A000041. [Cayley]
a(n) = (1/n)*Sum_{k = 1..n} a(n-k)*b(k), n > 1, a(0) = 1, b(k) = Sum_{d|k} d*numbpart(d), where numbpart(d) = number of partitions of d, cf. A061259. - Vladeta Jovovic, Apr 21 2001
Logarithmic derivative yields A061259 (equivalent to above formula from Vladeta Jovovic). - Paul D. Hanna, Sep 05 2012
a(n) = Sum_{k=1..A000041(n)} A001055(A215366(n,k)) = number of factorizations of Heinz numbers of integer partitions of n. - Gus Wiseman, Dec 19 2016
a(n) = |{m>=1 : n = Sum_{k=1..A001222(m)} A056239(A112798(m,k)+1)}| = number of normalized twice-prime-factored multiset partitions (see A275024) whose total sum of parts is n. - Gus Wiseman, Dec 19 2016

Extensions

Additional comments from Valery A. Liskovets
Sylvester references from Barry Cipra, Oct 07 2003

A301480 Number of rooted twice-partitions of n.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 30, 54, 103, 186, 345, 606, 1115, 1936, 3466, 6046, 10630, 18257, 31927, 54393, 93894, 159631, 272155, 458891, 779375, 1305801, 2196009, 3667242, 6130066, 10170745, 16923127, 27942148, 46211977, 76039205, 125094369, 204952168, 335924597
Offset: 1

Views

Author

Gus Wiseman, Mar 22 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1. A rooted twice-partition of n is a choice of a rooted partition of each part in a rooted partition of n.

Examples

			The a(5) = 8 rooted twice-partitions: ((3)), ((21)), ((111)), ((2)()), ((11)()), ((1)(1)), ((1)()()), (()()()()).
The a(6) = 15 rooted twice-partitions:
(4), (31), (22), (211), (1111),
(3)(), (21)(), (111)(), (2)(1), (11)(1),
(2)()(), (11)()(), (1)(1)(),
(1)()()(),
()()()()().
		

Crossrefs

Programs

  • Mathematica
    nn=30;
    ser=x*Product[1/(1-PartitionsP[n-1]x^n),{n,nn}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,nn}]
  • PARI
    seq(n)={Vec(1/prod(k=1, n-1, 1 - numbpart(k-1)*x^k + O(x^n)))} \\ Andrew Howroyd, Aug 29 2018

Formula

O.g.f.: x * Product_{n > 0} 1/(1 - P(n-1) x^n) where P = A000041.

A300486 Number of relatively prime or monic partitions of n.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 15, 18, 28, 35, 56, 64, 101, 120, 168, 210, 297, 348, 490, 583, 776, 946, 1255, 1482, 1952, 2335, 2981, 3581, 4565, 5387, 6842, 8119, 10086, 12013, 14863, 17527, 21637, 25525, 31083, 36695, 44583, 52256, 63261, 74171, 88932, 104303, 124754
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2018

Keywords

Comments

A relatively prime or monic partition of n is an integer partition of n that is either of length 1 (monic) or whose parts have no common divisor other than 1 (relatively prime).

Examples

			The a(6) = 8 relatively prime or monic partitions are (6), (51), (411), (321), (3111), (2211), (21111), (111111). Missing from this list are (42), (33), (222).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Or[Length[#]===1,GCD@@#===1]&]],{n,20}]
  • PARI
    a(n)={(n > 1) + sumdiv(n, d, moebius(d)*numbpart(n/d))} \\ Andrew Howroyd, Aug 29 2018

Formula

a(n > 1) = 1 + A000837(n) = 1 + Sum_{d|n} mu(d) * A000041(n/d).

A000235 Number of n-node rooted trees of height 3.

Original entry on oeis.org

0, 0, 0, 1, 3, 8, 18, 38, 76, 147, 277, 509, 924, 1648, 2912, 5088, 8823, 15170, 25935, 44042, 74427, 125112, 209411, 348960, 579326, 958077, 1579098, 2593903, 4247768, 6935070, 11290627, 18330973, 29684082, 47946852, 77258764, 124198083
Offset: 1

Views

Author

Keywords

Comments

(1, 1, 2, 3, 5, 8, ...) convolved with (0, 0, 1, 2, 4, 7, ...) = (0, 0, 1, 3, 8, ...). - Gary W. Adamson, Aug 14 2010

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column h=3 of A034781.

Programs

  • Maple
    # For Maple program see link.
    with(combstruct):
    ZL:= proc(m) local i; [T0, {seq(T||i=Prod(Z, Set(T||(i+1))), i=0..m-1), T||m=Z}, unlabeled] end: A000235:= n-> count(ZL(3), size=n)-count(ZL(2), size=n): seq(A000235(n), n=1..36); # Zerinvary Lajos, Sep 23 2007
  • Mathematica
    m = 36; Rest @ CoefficientList[ Series[x*Product[(1-x^k)^(-PartitionsP[k-1]), {k, 1, m}], {x, 0, m}], x] - PartitionsP[Range[0, m-1]] (* Jean-François Alcover, Jul 05 2011, after Christian G. Bower *)

Formula

a(n) = A001383(n) - A000041(n-1). - Christian G. Bower

A301706 Number of rooted thrice-partitions of n.

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 43, 91, 201, 422, 918, 1896, 4089, 8376, 17793, 36445, 76446, 155209, 324481, 655426, 1355220, 2741092, 5617505, 11291037, 23086423, 46227338, 93753196, 187754647, 378675055, 754695631, 1518414812, 3016719277, 6037006608, 11984729983
Offset: 1

Views

Author

Gus Wiseman, Mar 25 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1. A rooted twice-partition of n is a choice of a rooted partition of each part in a rooted partition of n. A rooted thrice-partition of n is a choice of a rooted twice-partition of each part in a rooted partition of n.

Examples

			The a(5) = 9 rooted thrice-partitions:
((2)), ((11)), ((1)()), (()()()),
((1))(), (()())(), (())(()),
(())()(),
()()()().
The a(6) = 19 rooted thrice-partitions:
((3)), ((21)), ((111)), ((2)()), ((11)()), ((1)(1)), ((1)()()), (()()()()),
((2))(), ((11))(), ((1)())(), (()()())(), ((1))(()), (()())(()),
((1))()(), (()())()(), (())(())(),
(())()()(),
()()()()().
		

Crossrefs

Programs

  • Mathematica
    twire[n_]:=twire[n]=Sum[Times@@PartitionsP/@(ptn-1),{ptn,IntegerPartitions[n-1]}];
    thrire[n_]:=Sum[Times@@twire/@ptn,{ptn,IntegerPartitions[n-1]}];
    Array[thrire,30]

A304966 Expansion of Product_{k>=1} 1/(1 - x^k)^(p(k)-1), where p(k) = number of partitions of k (A000041).

Original entry on oeis.org

1, 0, 1, 2, 5, 8, 18, 30, 61, 107, 203, 358, 663, 1162, 2093, 3666, 6481, 11258, 19652, 33874, 58464, 100046, 171032, 290563, 492745, 831393, 1399655, 2346707, 3924873, 6541472, 10875575, 18025629, 29804125, 49143254, 80841455, 132651457, 217179366, 354745107, 578215807
Offset: 0

Views

Author

Ilya Gutkovskiy, May 22 2018

Keywords

Comments

Euler transform of A000065.
Convolution of the sequences A001970 and A010815.

Crossrefs

Programs

  • Maple
    with(combinat): with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          numbpart(d)-d, d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, May 22 2018
  • Mathematica
    nmax = 38; CoefficientList[Series[Product[1/(1 - x^k)^(PartitionsP[k] - 1), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (PartitionsP[d] - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 38}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A000065(k).

A218153 G.f.: A(x) = exp( Sum_{n>=1} x^n/n * Product_{k>=1} (1 + x^(n*k)) ).

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 16, 25, 42, 65, 105, 162, 256, 391, 605, 918, 1401, 2106, 3176, 4739, 7076, 10482, 15518, 22833, 33556, 49068, 71633, 104153, 151155, 218609, 315562, 454150, 652343, 934559, 1336328, 1906307, 2714409, 3856777, 5470236, 7743437, 10942743, 15435773
Offset: 0

Views

Author

Paul D. Hanna, Nov 01 2012

Keywords

Comments

Compare to the g.f. of A001383:
1 + x*exp( Sum_{n>=1} x^n/n * Product_{k>=1} 1/(1 - x^(n*k)) ).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 9*x^5 + 16*x^6 + 25*x^7 +...
where
log(A(x)) = x/1*((1+x)*(1+x^2)*(1+x^3)*(1+x^4)*(1+x^5)*...) +
x^2/2*((1+x^2)*(1+x^4)*(1+x^6)*(1+x^8)*(1+x^10)*...) +
x^3/3*((1+x^3)*(1+x^6)*(1+x^9)*(1+x^12)*(1+x^15)*...) +
x^4/4*((1+x^4)*(1+x^8)*(1+x^12)*(1+x^16)*(1+x^20)*...) +
x^5/5*((1+x^5)*(1+x^10)*(1+x^15)*(1+x^20)*(1+x^25)*...) +...
Also, the g.f. is equal to the Euler transform of the distinct partitions A000009:
A(x) = 1/((1-x)^1*(1-x^2)^1*(1-x^3)^1*(1-x^4)^2*(1-x^5)^2*(1-x^6)^3*(1-x^7)^4*(1-x^8)^5*(1-x^9)^6*(1-x^10)^8*(1-x^11)^10*...*(1-x^n)^A000009(n-1)*...).
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1 - x^k)^PartitionsQ[k-1], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 08 2016 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*prod(k=1, n\m+1, 1+x^(m*k)+x*O(x^n)))), n)}
    for(n=0, 50, print1(a(n), ", "))

Formula

G.f.: Product_{n>=1} 1 / (1 - x^n)^A000009(n-1), where A000009(n) equals the number of distinct partitions of n. - Paul D. Hanna, Nov 16 2012

A304967 Expansion of Product_{k>=1} 1/(1 - x^k)^(p(k)-p(k-1)), where p(k) = number of partitions of k (A000041).

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 8, 9, 20, 26, 49, 68, 123, 173, 295, 432, 707, 1044, 1672, 2483, 3900, 5817, 8993, 13424, 20539, 30609, 46399, 69052, 103879, 154198, 230550, 341261, 507484, 749028, 1108559, 1631340, 2404311, 3527615, 5179317, 7577263, 11086413, 16173577, 23588227
Offset: 0

Views

Author

Ilya Gutkovskiy, May 22 2018

Keywords

Comments

Euler transform of A002865.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
          (numtheory[sigma](j)-1)*b(n-j), j=1..n)/n)
        end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          b(d), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, May 22 2018
  • Mathematica
    nmax = 42; CoefficientList[Series[Product[1/(1 - x^k)^(PartitionsP[k] - PartitionsP[k - 1]), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (PartitionsP[d] - PartitionsP[d - 1]), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 42}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A002865(k).

A001385 Number of n-node trees of height at most 5.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 20, 47, 108, 252, 582, 1345, 3086, 7072, 16121, 36667, 83099, 187885, 423610, 953033, 2139158, 4792126, 10714105, 23911794, 53273599, 118497834, 263164833, 583582570, 1292276355, 2857691087, 6311058671, 13919982308, 30664998056, 67473574130
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is also the number of n-vertex graphs that do not contain a P_4, C_4, or K_6 as induced subgraph (K_6-free trivially perfect graphs, cf. A123467). - Falk Hüffner, Jan 10 2016

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A001383 for details.

Programs

  • Maple
    For Maple program see link in A000235.
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: shr:= proc(p) n->`if`(n=0, 1,p(n-1)) end: b[0]:= etr(n->1): for j from 1 to 3 do b[j]:= etr(shr(b[j-1])) od: a:= shr(b[3]): seq(a(n), n=0..35); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    Prepend[Nest[CoefficientList[Series[Product[1/(1-x^i)^#[[i]],{i,1,Length[#]}],{x,0,40}],x]&,{1},5],1] (* Geoffrey Critzer, Aug 01 2013 *)

Formula

Take Euler transform of A001384 and shift right. (Christian G. Bower)

A034823 Number of n-node rooted trees of height at most 6.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 20, 48, 114, 278, 676, 1653, 4027, 9816, 23843, 57833, 139908, 337856, 814127, 1958524, 4703322, 11278027, 27003707, 64571463, 154207616, 367841733, 876450881, 2086098057, 4960230005, 11782852600, 27963874395, 66307010599
Offset: 0

Views

Author

Keywords

Crossrefs

See A001383 for details.

Programs

  • Maple
    For Maple program see link in A000235.
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: shr:= proc(p) n->`if`(n=0, 1,p(n-1)) end: b[0]:= etr(n->1): for j from 1 to 4 do b[j]:= etr(shr(b[j-1])) od: a:= shr(b[4]): seq(a(n), n=0..31); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    Prepend[Nest[CoefficientList[Series[Product[1/(1-x^i)^#[[i]],{i,1,Length[#]}],{x,0,40}],x]&,{1},6],1] (* Geoffrey Critzer, Aug 01 2013 *)

Formula

Take Euler transform of A001385 and shift right. (Christian G. Bower).
Showing 1-10 of 18 results. Next