A001413 Number of 2n-step self-avoiding cycles on the cubic lattice.
0, 24, 264, 3312, 48240, 762096, 12673920, 218904768, 3891176352, 70742410800, 1309643747808, 24609869536800, 468270744898944, 9005391024862848, 174776445357365040, 3419171337633496704
Offset: 1
References
- B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 462.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- M. E. Fisher and M. F. Sykes, Excluded-volume problem and the Ising model of ferromagnetism, Phys. Rev. 114 (1959), 45-58.
- B. J. Hiley and M. F. Sykes, Probability of initial ring closure in the restricted random-walk model of a macromolecule, J. Chem. Phys., 34 (1961), 1531-1537.
- M. F. Sykes, D. S. McKenzie, M. G. Watts, and J. L. Martin, The number of self-avoiding walks on a lattice, J. Phys. A 5 (1972), 661-666.
Crossrefs
Programs
-
Python
def A001413(n): # For illustration; becomes slow for n >= 5. if not hasattr(A:=A001413, 'terms'): A.terms=[]; A.paths=((0,0,0),), while n > len(A.terms): for L in (0,1): new = []; cycles = 0 for path in A.paths: end = path[-1] for i in (0,1,2): for s in (1,-1): t = tuple(end[j]if j!=i else end[j]+s for j in (0,1,2)) if t not in path: new.append(path+(t,)) elif L and t==path[0]: cycles += 1 A.paths = new A.terms.append(cycles) return A.terms[n-1] if n > 1 else 0 # M. F. Hasler, Jun 17 2025
Formula
a(n) = 4*n*A001409(n). - Sean A. Irvine, Jul 27 2020
Extensions
a(11)-a(12) from Bert Dobbelaere, Jan 04 2019
a(13)-a(16) (using A001409) from Alois P. Heinz, Feb 28 2024
Name changed by M. F. Hasler, Jun 17 2025
Comments