A001412
Number of n-step self-avoiding walks on cubic lattice.
Original entry on oeis.org
1, 6, 30, 150, 726, 3534, 16926, 81390, 387966, 1853886, 8809878, 41934150, 198842742, 943974510, 4468911678, 21175146054, 100121875974, 473730252102, 2237723684094, 10576033219614, 49917327838734, 235710090502158, 1111781983442406, 5245988215191414, 24730180885580790, 116618841700433358, 549493796867100942, 2589874864863200574, 12198184788179866902, 57466913094951837030, 270569905525454674614
Offset: 0
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, section 5.10, pp. 331-339.
- B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 462.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. D. Schram, G. T. Barkema, and R. H. Bisseling, Table of n, a(n) for n = 0..36
- N. Clisby, Enumerative combinatorics of lattice polymers, Notices AMS, 68:4 (2021), 504-515. (Excellent survey)
- N. Clisby, R. Liang, and G. Slade, Self-avoiding walk enumeration via the lace expansion, J. Phys. A: Math. Theor. 40 (2007), 10973-11017, Table A5 for n<=30.
- Steven R. Finch, Self-Avoiding-Walk Connective Constants
- M. E. Fisher and M. F. Sykes, Excluded-volume problem and the Ising model of ferromagnetism, Phys. Rev. 114 (1959), 45-58.
- A. J. Guttmann, On the critical behavior of self-avoiding walks, J. Phys. A 20 (1987), 1839-1854.
- B. J. Hiley and M. F. Sykes, Probability of initial ring closure in the restricted random-walk model of a macromolecule, J. Chem. Phys., 34 (1961), 1531-1537.
- D. S. McKenzie and C. Domb, The second osmotic virial coefficient of athermal polymer solutions, Proceedings of the Physical Society, 92 (1967) 632-649.
- A. M. Nemirovsky, Karl F. Freed, Takao Ishinabe, and Jack F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.
- D. Randall, Counting in Lattices: Combinatorial Problems from Statistical Mechanics, PhD Thesis (1994).
- Raoul D. Schram, Gerard T. Barkema, and Rob H. Bisseling, Exact enumeration of self-avoiding walks, arXiv:1104.2184 [math-ph], 2011.
- Nobu C. Shirai and Naoyuki Sakumichi, Negative Energetic Elasticity of Lattice Polymer Chain in Solvent, arXiv:2202.12483 [cond-mat.soft], 2022.
- M. F. Sykes, Some counting theorems in the theory of the Ising problem and the excluded volume problem, J. Math. Phys., 2 (1961), 52-62.
- M. F. Sykes, Self-avoiding walks on the simple cubic lattice, J. Chem. Phys., 39 (1963), 410-411.
- M. F. Sykes, A. J. Guttmann, M. G. Watts, and P. D. Roberts, The asymptotic behavior of self-avoiding walks and returns on a lattice, J. Phys. A 5 (1972), 653-660.
- M. F. Sykes, D. S. McKenzie, M. G. Watts, and J. L. Martin, The number of self-avoiding rings on a lattice, J. Phys. A 5 (1972), 661-666.
-
mo = {{1, 0, 0}, {-1, 0, 0}, {0, 1, 0}, {0, -1, 0}, {0, 0, 1}, {0, 0, -1}}; a[0] = 1;
a[tg_, p_: {{0, 0, 0}}] := Block[{e, mv = Complement[Last[p] + # & /@ mo, p]},
If[tg == 1, Return[Length@mv],Sum[a[tg - 1, Append[p, e]], {e, mv}]]];
a /@ Range[0, 8]
(* Robert FERREOL, Nov 30 2018, after the program of Giovanni Resta in A001411 *)
-
def add(L,x):
M=[y for y in L];M.append(x)
return(M)
plus=lambda L,M : [x+y for x,y in zip(L,M)]
mo=[[1,0,0],[-1,0,0],[0,1,0],[0,-1,0],[0,0,1],[0,0,-1]]
def a(n,P=[[0,0,0]]):
if n==0: return(1)
mv1 = [plus(P[-1],x) for x in mo]
mv2=[x for x in mv1 if x not in P]
if n==1: return(len(mv2))
else: return(sum(a(n-1,add(P,x)) for x in mv2))
[a(n) for n in range(8)]
# Robert FERREOL, Nov 30 2018
A002902
Number of n-step self-avoiding walks on a cubic lattice with a first step along the positive x, y, or z axis.
Original entry on oeis.org
3, 15, 75, 363, 1767, 8463, 40695, 193983, 926943, 4404939, 20967075, 99421371, 471987255, 2234455839, 10587573027, 50060937987, 236865126051, 1118861842047, 5288016609807, 24958663919367, 117855045251079, 555890991721203, 2622994107595707
Offset: 1
- B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 462.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- D. S. McKenzie and C. Domb, The second osmotic virial coefficient of athermal polymer solutions, Proceedings of the Physical Society, 92 (1967) 632-649.
- A. M. Nemirovsky et al., Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.
- M. F. Sykes, Self-avoiding walks on the simple cubic lattice, J. Chem. Phys., 39 (1963), 410-411.
- M. F. Sykes et al., The asymptotic behavior of selfavoiding walks and returns on a lattice, J. Phys. A 5 (1972), 653-660.
A038515
Number of self-avoiding walks on a tetrahedral (diamond) net, having 2n steps and forming a closed loop.
Original entry on oeis.org
1, 0, 0, 6, 12, 120, 564, 4074, 25008, 174618, 1181100, 8358306, 59167872, 427081512, 3103408308, 22797207330, 168616517760, 1256350493196
Offset: 0
a(16)-a(17) using the data from Guttmann & Jensen added by
Andrey Zabolotskiy, Jun 02 2022
A010567
Number of 2n-step self-avoiding closed paths (or cycles) on the 3-dimensional cubic lattice.
Original entry on oeis.org
6, 24, 264, 3312, 48240, 762096, 12673920, 218904768, 3891176352, 70742410800, 1309643747808, 24609869536800, 468270744898944, 9005391024862848, 174776445357365040, 3419171337633496704
Offset: 1
Cf.
A010568 (analog in 4 dimensions),
A010569 (in 5D),
A010570 (in 6D),
A130706 (in 1D),
A010566 (in 2D, different convention for n=1),
A002896 (closed walks, not necessarily self-avoiding),
A001412 (self-avoiding walks, not necessarily closed),
A039618,
A038515.
-
def A010567(n): # For illustration - becomes slow for n > 5
if not hasattr(A:=A010567, 'terms'):
A.terms=[6]; O=0,; A.paths=[(O*3, (1,)+O*2, t+O)for t in((2,0),(1,1))]
while n > len(A.terms):
for L in (0,1):
new = []; cycles = 0
for path in A.paths:
end = path[-1]
for i in (0,1,2):
for s in (1,-1):
t = tuple(end[j]if j!=i else end[j]+s for j in (0,1,2))
if t not in path: new.append(path+(t,))
elif L and t==path[0]: cycles += 24 if path[2][1] else 6
A.paths = new
A.terms.append(cycles)
return A.terms[n-1] # M. F. Hasler, Jun 17 2025
Name edited and "self-avoiding" added by
M. F. Hasler, Jun 17 2025
A010568
Number of 2n-step self-avoiding closed paths on the 4-dimensional cubic lattice.
Original entry on oeis.org
8, 48, 912, 22944, 652320, 20266368, 669756192, 23146172544, 827460518688, 30378237727200, 1139447186954208, 43501453488658368, 1685588678025512832
Offset: 1
- Nathan Clisby, Richard Liang, and Gordon Slade, Self-avoiding walk enumeration via the lace expansion, J. Phys. A: Math. Theor. 40 (2007), 10973-11017. Table A6 "Enumeration results for d = 4", column p_n, row 2*n gives a(n)/(4*n) for n>1.
- Nathan Clisby, Richard Liang, and Gordon Slade, Self-avoiding walk enumeration via the lace expansion. [Tables in machine-readable format on separate pages.]
- M. E. Fisher and D. S. Gaunt, Ising model and self-avoiding walks on hypercubical lattices and high density expansions, Phys. Rev. 133 (1964) A224-A239.
-
def A010568(n): # For illustration - becomes slow for n > 5
if not hasattr(A:=A010568, 'r'):
A.terms = [8]; O = 0,; I = O*4, (1,*O*3)
A.paths = (*I, (2,*O*3)), (*I, (1,1,0,0))
while n > len(A.terms):
for L in (0, 1):
new=[]; cycles = 0; O=(0,)*4; I = 0,1,2,3
for path in A.paths:
end = path[-1]; weight = 48 if path[2][1] else 8
for i in I:
for s in (1, -1):
t = tuple(end[j]if j!=i else end[j]+s for j in I)
if t not in path: new.append(path+(t,))
elif L and t==O: cycles += weight
A.paths = new
A.terms.append(cycles)
return A.terms[n-1] # M. F. Hasler, Jun 17 2025
"Self-avoiding" inserted in definition by
M. F. Hasler, Jun 18 2025
A001409
Number of 2n-step polygons on cubic lattice.
Original entry on oeis.org
1, 0, 3, 22, 207, 2412, 31754, 452640, 6840774, 108088232, 1768560270, 29764630632, 512705615350, 9005206632672, 160810554015408, 2912940755956084, 53424552150523386
Offset: 0
From _M. F. Hasler_, Jun 17 2025: (Start)
For n = 2, the three 4-step polygons are the 1 X 1 squares orthogonal to one of the three coordinate axes. (The sequence counts the polygons up to translations.)
For n = 3, the 22 six-step polygons can be partitioned into:
- six 2 X 1 rectangles (two in each of the previously considered planes);
- twelve L- or "seat" shaped polygons (as one can get by gluing together two 1 X 1 squares in a 90 degree angle along one side, or by folding a 2 X 1 rectangle by 90 degrees along the common side of its 1 X 1 square halves): choose one of the six half axes for the orientation of one of the squares, and one of the four orthogonal axes for the other, then divide by two because the order of the two choices doesn't matter;
- four polygons obtained by making three steps in direction of distinct axes (e.g., in direction of the three unit vectors) and then the same three steps in the opposite direction. The four inequivalent instances are obtained by rotating one of them three times by 90° around the same fixed axis. (End)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. Clisby, R. Liang, and G. Slade, Self-avoiding walk enumeration via the lace expansion, J. Phys. A: Math. Theor., 40 (2007), pp. 10973-11017, Table A5.
- G. S. Rushbrooke and J. Eve, High-temperature Ising partition function and related noncrossing polygons for the simple cubic lattice, J. Math. Physics, 3 (1962), pp. 185-189.
A001667
2n-step polygons on b.c.c. lattice.
Original entry on oeis.org
96, 1776, 43776, 1237920, 37903776, 1223681760, 41040797376, 1416762272736, 50027402384640, 1799035070369856
Offset: 2
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. Butera and M. Comi, Enumeration of the self-avoiding polygons on a lattice by the Schwinger-Dyson equations, Annals of Combinatorics 3, 277-286 (1999); arXiv:cond-mat/9903297, 1999.
- M. E. Fisher and M. F. Sykes, Excluded-volume problem and the Ising model of ferromagnetism, Phys. Rev. 114 (1959), 45-58.
- M. F. Sykes et al., The number of self-avoiding walks on a lattice, J. Phys. A 5 (1972), 661-666.
- Index entries for sequences related to b.c.c. lattice
A140476
Number of self-avoiding walks on cubic lattice with no more than n steps.
Original entry on oeis.org
1, 7, 37, 187, 913, 4447, 21373, 102763, 490729, 2344615, 11154493, 53088643, 251931385, 1195905895, 5664817573, 26839963627, 126961839601, 600692091703, 2838415775797, 13414448995411, 63331776834145, 299041867336303
Offset: 0
a(9) = 1 + 6 + 30 + 150 + 726 + 3534 + 16926 + 81390 + 387966 + 1853886 = 2344615.
A342800
Number of self-avoiding polygons on a 3-dimensional cubic lattice where each walk consists of steps with incrementing length from 1 to n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 24, 72, 0, 0, 1704, 5184, 0, 0, 193344, 600504, 0, 0, 34321512, 141520752, 0, 0, 9205815672, 37962945288, 0, 0
Offset: 1
a(1) to a(6) = 0 as no self-avoiding closed-loop walk is possible.
a(7) = 24 as there is one walk which forms a closed loop which can be walked in 24 different ways on a 3D cubic lattice. These walks, and those for n(8) = 72, are purely 2-dimensional. See A334720 for images of these walks.
a(11) = 1704. These walks consist of 120 purely 2-dimensional walks and 1584 3-dimensional walks. One of these 3-dimensional walks is:
.
/|
/ | z y
/ | | /
7 +y / | |/
/ | 8 -z |----- x
6 +x / |
|---.---.---.---.---.---/ | 9 +x
| |---.---.---.---.---.---.---.---.---/
| 5 +z /
| /
|---.---.---.---/ /
4 -x / 3 +y /
/ / 10 -y
| 2 +z /
| /
| 1 +z /
X---.---.---.---.---.---.---.---.---.---.---/
11 -x
.
Showing 1-9 of 9 results.
Comments