A001438 Maximal number of mutually orthogonal Latin squares (or MOLS) of order n.
1, 2, 3, 4, 1, 6, 7, 8
Offset: 2
References
- CRC Handbook of Combinatorial Designs, 1996, pp. 113ff.
- S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Arrays, Springer-Verlag, NY, 1999, Chapter 8.
- E. T. Parker, Attempts for orthogonal latin 10-squares, Abstracts Amer. Math. Soc., Vol. 12 1991 #91T-05-27.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1997, p. 58.
Links
- Anonymous, Order-10 Greco-Latin square.
- Thomas Bloom, Problem 724, Erdős Problems.
- R. C. Bose and S. S. Shrikhande, On The Falsity Of Euler's Conjecture About The Non-Existence Of Two Orthogonal Latin Squares Of Order 4t+2, Proc. Nat. Acad. Sci., 1959 45 (5) 734-737.
- R. Bose, S. Shrikhande, and E. Parker, Further Results on the Construction of Mutually Orthogonal Latin Squares and the Falsity of Euler's Conjecture, Canadian Journal of Mathematics, 12 (1960), 189-203.
- C. J. Colbourn and J. H. Dinitz, Mutually Orthogonal Latin Squares: A Brief Survey of Constructions, preprint, Journal of Statistical Planning and Inference, Volume 95, Issues 1-2, 1 May 2001, Pages 9-48.
- M. Dettinger, Euler's Square
- David Joyner and Jon-Lark Kim, Kittens, Mathematical Blackjack, and Combinatorial Codes, Chapter 3 in Selected Unsolved Problems in Coding Theory, Applied and Numerical Harmonic Analysis, Springer, 2011, pp. 47-70, DOI: 10.1007/978-0-8176-8256-9_3.
- Numberphile, Euler squares, YouTube video, 2020.
- E. T. Parker, Orthogonal Latin Squares, Proc. Nat. Acad. Sci., 1959 45 (6) 859-862.
- E. Parker-Woodruff, Greco-Latin Squares Problem
- Tony Phillips, Mutually Orthogonal Latin Squares (MOLS), Latin Squares in Practice and in Theory II.
- N. Rao, Shrikhande, "Euler's Spoiler", Turns 100, Bhāvanā, The mathematics magazine, Volume 1, Issue 4, 2017.
- Eric Weisstein's World of Mathematics, Euler's Graeco-Roman Squares Conjecture
- Wikipedia, Graeco-Latin square.
- Index entries for sequences related to Latin squares and rectangles
Formula
a(n) <= n-1 for all n>1. - Tom Edgar, Apr 27 2015
a(p^k) = p^k-1 for all primes p and k>0. - Tom Edgar, Apr 27 2015
a(n) = A107431(n,n) - 2. - Floris P. van Doorn, Sep 10 2019
Comments