A287695
Maximum number of diagonal Latin squares with the first row in ascending order that can be orthogonal to a given diagonal Latin square of order n.
Original entry on oeis.org
1, 0, 0, 1, 1, 0, 3, 824, 614
Offset: 1
From _Eduard I. Vatutin_, Mar 29 2021: (Start)
One of the best existing diagonal Latin squares of order 7
0 1 2 3 4 5 6
2 3 1 5 6 4 0
5 6 4 0 1 2 3
4 0 6 2 3 1 5
6 2 0 1 5 3 4
1 5 3 4 0 6 2
3 4 5 6 2 0 1
has 3 orthogonal mates
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
5 6 4 0 1 2 3 3 4 5 6 2 0 1 6 2 0 1 5 3 4
1 5 3 4 0 6 2 4 0 6 2 3 1 5 3 4 5 6 2 0 1
6 2 0 1 5 3 4 2 3 1 5 6 4 0 1 5 3 4 0 6 2
3 4 5 6 2 0 1 5 6 4 0 1 2 3 2 3 1 5 6 4 0
2 3 1 5 6 4 0 6 2 0 1 5 3 4 4 0 6 2 3 1 5
4 0 6 2 3 1 5 1 5 3 4 0 6 2 5 6 4 0 1 2 3
so a(7)=3. (End)
- Natalia Makarova, Diagonal Latin square with 10 orthogonal squares
- Natalia Makarova, DB CF ODLS of order 9
- Natalia Makarova, Maximum number of normalized ODLS from one DLS
- Natalia Makarova, Comments for result a(12) >= 3855983322
- Natalia Makarova, New boundaries for maximum number of normalized orthogonal diagonal Latin squares to one diagonal Latin square
- Eduard I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian).
- Eduard I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru, square of order 9 with 516 orthogonal squares (in Russian).
- Eduard I. Vatutin, About the A328873(N)-1 <= A287695(N) inequality between the maximum cardinality of clique and the maximum number of orthogonal normalized mates for one diagonal Latin square (in Russian).
- Eduard I. Vatutin, About the diagonal Latin square of order 12 with 1764493860 orthogonal diagonal mates (in Russian).
- Eduard I. Vatutin, Duplicate solutions removing using parallel and distributed DLX (in Russian).
- Eduard I. Vatutin, Enumerating the Main Classes of Cyclic and Pandiagonal Latin Squares, Recognition — 2021, pp. 77-79. (in Russian)
- Eduard I. Vatutin, Proving list (best known examples).
- Eduard I. Vatutin, Stepan E. Kochemazov, Oleq S. Zaikin, Maxim O. Manzuk, Natalia N. Nikitina and Vitaly S. Titov, Central symmetry properties for diagonal Latin squares, Problems of Information Technology (2019) No. 2, 3-8.
- Eduard I. Vatutin, S. E. Kochemazov, O. S. Zaikin, M. O. Manzuk and V. S. Titov, Combinatorial characteristics estimating for pairs of orthogonal diagonal Latin squares, Multicore processors, parallel programming, FPGA, signal processing systems (2017), pp. 104-111 (in Russian).
- Eduard I. Vatutin, Natalia N. Nikitina and Maxim O. Manzuk, First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch (in Russian).
- E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order, Intellectual and Information Systems (Intellect - 2021). Tula, 2021. pp. 7-17. (in Russian)
- E. I. Vatutin, V. S. Titov, A. I. Pykhtin, A. V. Kripachev, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, Estimation of the Cardinalities of the Spectra of Fast-computable Numerical Characteristics for Diagonal Latin Squares of Orders N>9 (in Russian) // Science and education in the development of industrial, social and economic spheres of Russian regions. Murom, 2022. pp. 314-315.
- Index entries for sequences related to Latin squares and rectangles.
A328873
Maximal size of a set of pairwise mutually orthogonal diagonal Latin squares of order n.
Original entry on oeis.org
1, 0, 0, 2, 2, 1, 4, 6, 6
Offset: 1
Orthogonal pair of Diagonal Latin squares of order 18:
1 5 15 16 17 18 2 14 4 13 3 7 12 10 8 6 11 9
8 2 6 15 16 17 18 1 5 14 4 13 11 9 7 12 10 3
14 9 3 7 15 16 17 2 6 1 5 12 10 8 13 11 4 18
13 1 10 4 8 15 16 3 7 2 6 11 9 14 12 5 18 17
12 14 2 11 5 9 15 4 8 3 7 10 1 13 6 18 17 16
11 13 1 3 12 6 10 5 9 4 8 2 14 7 18 17 16 15
3 12 14 2 4 13 7 6 10 5 9 1 8 18 17 16 15 11
9 10 11 12 13 14 1 15 16 17 18 8 7 6 5 4 3 2
6 7 8 9 10 11 12 18 17 16 15 5 4 3 2 1 14 13
5 6 7 8 9 10 11 16 15 18 17 4 3 2 1 14 13 12
7 8 9 10 11 12 13 17 18 15 16 6 5 4 3 2 1 14
4 15 16 17 18 1 8 13 3 12 2 14 6 11 9 7 5 10
15 16 17 18 14 7 9 12 2 11 1 3 13 5 10 8 6 4
16 17 18 13 6 8 3 11 1 10 14 15 2 12 4 9 7 5
17 18 12 5 7 2 4 10 14 9 13 16 15 1 11 3 8 6
18 11 4 6 1 3 5 9 13 8 12 17 16 15 14 10 2 7
10 3 5 14 2 4 6 8 12 7 11 18 17 16 15 13 9 1
2 4 13 1 3 5 14 7 11 6 10 9 18 17 16 15 12 8
and
1 8 14 13 12 11 3 9 6 5 7 4 15 16 17 18 10 2
5 2 9 1 14 13 12 10 7 6 8 15 16 17 18 11 3 4
15 6 3 10 2 1 14 11 8 7 9 16 17 18 12 4 5 13
16 15 7 4 11 3 2 12 9 8 10 17 18 13 5 6 14 1
17 16 15 8 5 12 4 13 10 9 11 18 14 6 7 1 2 3
18 17 16 15 9 6 13 14 11 10 12 1 7 8 2 3 4 5
2 18 17 16 15 10 7 1 12 11 13 8 9 3 4 5 6 14
14 1 2 3 4 5 6 15 16 17 18 13 12 11 10 9 8 7
4 5 6 7 8 9 10 17 18 15 16 3 2 1 14 13 12 11
13 14 1 2 3 4 5 18 17 16 15 12 11 10 9 8 7 6
3 4 5 6 7 8 9 16 15 18 17 2 1 14 13 12 11 10
7 13 12 11 10 2 1 8 5 4 6 14 3 15 16 17 18 9
12 11 10 9 1 14 8 7 4 3 5 6 13 2 15 16 17 18
10 9 8 14 13 7 18 6 3 2 4 11 5 12 1 15 16 17
8 7 13 12 6 18 17 5 2 1 3 9 10 4 11 14 15 16
6 12 11 5 18 17 16 4 1 14 2 7 8 9 3 10 13 15
11 10 4 18 17 16 15 3 14 13 1 5 6 7 8 2 9 12
9 3 18 17 16 15 11 2 13 12 14 10 4 5 6 7 1 8
so a(18) >= 2.
- R. J. R. Abel, Charles J. Colbourn, and Jeffrey H. Dinitz, Mutually Orthogonal Latin Squares (MOLS) [Note the first author, Julian Abel, has the initials R. J. R. A. - _N. J. A. Sloane_, Nov 05 2020]
- B. Du, New Bounds For Pairwise Orthogonal Diagonal Latin Squares, Australasian Journal of Combinatorics 7 (1993), pp.87-99.
- Natalia Makarova, MODLS of order 15
- Natalia Makarova, Complete MOLS systems
- Natalia Makarova, Orthogonal Diagonal Latin squares
- Natalia Makarova, Mutually Orthogonal Diagonal Latin squares (MODLS) for orders 9 - 20
- Natalia Makarova, MOLS and MODLS of order 12
- E. I. Vatutin, Discussion about properties of diagonal Latin squares (in Russian), Oct 29 2019.
- Eduard I. Vatutin, On the falsity of Makarova's proof that a(9) = 6 (in Russian).
- Eduard I. Vatutin, About the cliques from orthogonal diagonal Latin squares of order 9, brute force based proof that a(9) = 6 (in Russian).
- E. I. Vatutin, M. O. Manzuk, V. S. Titov, S. E. Kochemazov, A. D. Belyshev, N. N. Nikitina, Orthogonality-based classification of diagonal latin squares of orders 1-8, High-performance computing systems and technologies. Vol. 3. No. 1. 2019. pp. 94-100. (in Russian).
- E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, O. S. Zaikin, A. D. Belyshev, Cliques properties from diagonal Latin squares of small order, Intellectual and Information Systems (Intellect - 2019). Tula, 2019. pp. 17-23. (in Russian).
- Eduard I. Vatutin, About the A328873(N)-1 <= A287695(N) inequality between the maximum cardinality of clique and the maximum number of orthogonal normalized mates for one diagonal Latin square (in Russian).
- Eduard I. Vatutin, Proving list (best known examples).
- Wikipedia, Clique problem.
- Index entries for sequences related to Latin squares and rectangles.
A107431
Triangle read by rows: T(n,k) = maximal number of rounds for the social golfer problem with n groups of k golfers (n >= 2, 2 <= k <= n).
Original entry on oeis.org
3, 5, 4, 7, 4, 5, 9, 7, 5, 6, 11, 8, 7, 6, 3, 13, 10, 9
Offset: 2
Triangle begins:
3;
5, 4;
7, 4, 5;
9, 7, 5, 6;
11, 8, 7, 6, 3;
...
T(2,2) = 3 from { 12/34, 13/24, 14/23 }.
A091261
Number of orthogonal mates for the cyclic Latin squares of odd order.
Original entry on oeis.org
1, 3, 635, 2049219, 7372235460687
Offset: 3
Showing 1-4 of 4 results.
Comments