A330391
Number of main classes of diagonal Latin squares of order n with at least one orthogonal diagonal mate.
Original entry on oeis.org
1, 0, 0, 1, 1, 0, 5, 1105, 75307
Offset: 1
- Natalia Makarova, Database CF ODLS of order n
- E. I. Vatutin, Discussion about properties of diagonal Latin squares (in Russian)
- E. I. Vatutin, List of all main classes of orthogonal diagonal Latin squares of orders 1-8.
- E. I. Vatutin, List of all main classes of orthogonal diagonal Latin squares of order 9.
- E. I. Vatutin, List of known main classes of orthogonal diagonal Latin squares of order 11.
- E. I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- E. Vatutin, A. Belyshev, Enumerating the Orthogonal Diagonal Latin Squares of Small Order for Different Types of Orthogonality, Communications in Computer and Information Science, Vol. 1331, Springer, 2020, pp. 586-597.
- Eduard I. Vatutin, Natalia N. Nikitina, and Maxim O. Manzuk, First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch (in Russian).
- Index entries for sequences related to Latin squares and rectangles.
A001438
Maximal number of mutually orthogonal Latin squares (or MOLS) of order n.
Original entry on oeis.org
1, 2, 3, 4, 1, 6, 7, 8
Offset: 2
- CRC Handbook of Combinatorial Designs, 1996, pp. 113ff.
- S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Arrays, Springer-Verlag, NY, 1999, Chapter 8.
- E. T. Parker, Attempts for orthogonal latin 10-squares, Abstracts Amer. Math. Soc., Vol. 12 1991 #91T-05-27.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1997, p. 58.
- Anonymous, Order-10 Greco-Latin square.
- Thomas Bloom, Problem 724, Erdős Problems.
- R. C. Bose and S. S. Shrikhande, On The Falsity Of Euler's Conjecture About The Non-Existence Of Two Orthogonal Latin Squares Of Order 4t+2, Proc. Nat. Acad. Sci., 1959 45 (5) 734-737.
- R. Bose, S. Shrikhande, and E. Parker, Further Results on the Construction of Mutually Orthogonal Latin Squares and the Falsity of Euler's Conjecture, Canadian Journal of Mathematics, 12 (1960), 189-203.
- C. J. Colbourn and J. H. Dinitz, Mutually Orthogonal Latin Squares: A Brief Survey of Constructions, preprint, Journal of Statistical Planning and Inference, Volume 95, Issues 1-2, 1 May 2001, Pages 9-48.
- M. Dettinger, Euler's Square
- David Joyner and Jon-Lark Kim, Kittens, Mathematical Blackjack, and Combinatorial Codes, Chapter 3 in Selected Unsolved Problems in Coding Theory, Applied and Numerical Harmonic Analysis, Springer, 2011, pp. 47-70, DOI: 10.1007/978-0-8176-8256-9_3.
- Numberphile, Euler squares, YouTube video, 2020.
- E. T. Parker, Orthogonal Latin Squares, Proc. Nat. Acad. Sci., 1959 45 (6) 859-862.
- E. Parker-Woodruff, Greco-Latin Squares Problem
- Tony Phillips, Mutually Orthogonal Latin Squares (MOLS), Latin Squares in Practice and in Theory II.
- N. Rao, Shrikhande, "Euler's Spoiler", Turns 100, Bhāvanā, The mathematics magazine, Volume 1, Issue 4, 2017.
- Eric Weisstein's World of Mathematics, Euler's Graeco-Roman Squares Conjecture
- Wikipedia, Graeco-Latin square.
- Index entries for sequences related to Latin squares and rectangles
A328873
Maximal size of a set of pairwise mutually orthogonal diagonal Latin squares of order n.
Original entry on oeis.org
1, 0, 0, 2, 2, 1, 4, 6, 6
Offset: 1
Orthogonal pair of Diagonal Latin squares of order 18:
1 5 15 16 17 18 2 14 4 13 3 7 12 10 8 6 11 9
8 2 6 15 16 17 18 1 5 14 4 13 11 9 7 12 10 3
14 9 3 7 15 16 17 2 6 1 5 12 10 8 13 11 4 18
13 1 10 4 8 15 16 3 7 2 6 11 9 14 12 5 18 17
12 14 2 11 5 9 15 4 8 3 7 10 1 13 6 18 17 16
11 13 1 3 12 6 10 5 9 4 8 2 14 7 18 17 16 15
3 12 14 2 4 13 7 6 10 5 9 1 8 18 17 16 15 11
9 10 11 12 13 14 1 15 16 17 18 8 7 6 5 4 3 2
6 7 8 9 10 11 12 18 17 16 15 5 4 3 2 1 14 13
5 6 7 8 9 10 11 16 15 18 17 4 3 2 1 14 13 12
7 8 9 10 11 12 13 17 18 15 16 6 5 4 3 2 1 14
4 15 16 17 18 1 8 13 3 12 2 14 6 11 9 7 5 10
15 16 17 18 14 7 9 12 2 11 1 3 13 5 10 8 6 4
16 17 18 13 6 8 3 11 1 10 14 15 2 12 4 9 7 5
17 18 12 5 7 2 4 10 14 9 13 16 15 1 11 3 8 6
18 11 4 6 1 3 5 9 13 8 12 17 16 15 14 10 2 7
10 3 5 14 2 4 6 8 12 7 11 18 17 16 15 13 9 1
2 4 13 1 3 5 14 7 11 6 10 9 18 17 16 15 12 8
and
1 8 14 13 12 11 3 9 6 5 7 4 15 16 17 18 10 2
5 2 9 1 14 13 12 10 7 6 8 15 16 17 18 11 3 4
15 6 3 10 2 1 14 11 8 7 9 16 17 18 12 4 5 13
16 15 7 4 11 3 2 12 9 8 10 17 18 13 5 6 14 1
17 16 15 8 5 12 4 13 10 9 11 18 14 6 7 1 2 3
18 17 16 15 9 6 13 14 11 10 12 1 7 8 2 3 4 5
2 18 17 16 15 10 7 1 12 11 13 8 9 3 4 5 6 14
14 1 2 3 4 5 6 15 16 17 18 13 12 11 10 9 8 7
4 5 6 7 8 9 10 17 18 15 16 3 2 1 14 13 12 11
13 14 1 2 3 4 5 18 17 16 15 12 11 10 9 8 7 6
3 4 5 6 7 8 9 16 15 18 17 2 1 14 13 12 11 10
7 13 12 11 10 2 1 8 5 4 6 14 3 15 16 17 18 9
12 11 10 9 1 14 8 7 4 3 5 6 13 2 15 16 17 18
10 9 8 14 13 7 18 6 3 2 4 11 5 12 1 15 16 17
8 7 13 12 6 18 17 5 2 1 3 9 10 4 11 14 15 16
6 12 11 5 18 17 16 4 1 14 2 7 8 9 3 10 13 15
11 10 4 18 17 16 15 3 14 13 1 5 6 7 8 2 9 12
9 3 18 17 16 15 11 2 13 12 14 10 4 5 6 7 1 8
so a(18) >= 2.
- R. J. R. Abel, Charles J. Colbourn, and Jeffrey H. Dinitz, Mutually Orthogonal Latin Squares (MOLS) [Note the first author, Julian Abel, has the initials R. J. R. A. - _N. J. A. Sloane_, Nov 05 2020]
- B. Du, New Bounds For Pairwise Orthogonal Diagonal Latin Squares, Australasian Journal of Combinatorics 7 (1993), pp.87-99.
- Natalia Makarova, MODLS of order 15
- Natalia Makarova, Complete MOLS systems
- Natalia Makarova, Orthogonal Diagonal Latin squares
- Natalia Makarova, Mutually Orthogonal Diagonal Latin squares (MODLS) for orders 9 - 20
- Natalia Makarova, MOLS and MODLS of order 12
- E. I. Vatutin, Discussion about properties of diagonal Latin squares (in Russian), Oct 29 2019.
- Eduard I. Vatutin, On the falsity of Makarova's proof that a(9) = 6 (in Russian).
- Eduard I. Vatutin, About the cliques from orthogonal diagonal Latin squares of order 9, brute force based proof that a(9) = 6 (in Russian).
- E. I. Vatutin, M. O. Manzuk, V. S. Titov, S. E. Kochemazov, A. D. Belyshev, N. N. Nikitina, Orthogonality-based classification of diagonal latin squares of orders 1-8, High-performance computing systems and technologies. Vol. 3. No. 1. 2019. pp. 94-100. (in Russian).
- E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, O. S. Zaikin, A. D. Belyshev, Cliques properties from diagonal Latin squares of small order, Intellectual and Information Systems (Intellect - 2019). Tula, 2019. pp. 17-23. (in Russian).
- Eduard I. Vatutin, About the A328873(N)-1 <= A287695(N) inequality between the maximum cardinality of clique and the maximum number of orthogonal normalized mates for one diagonal Latin square (in Russian).
- Eduard I. Vatutin, Proving list (best known examples).
- Wikipedia, Clique problem.
- Index entries for sequences related to Latin squares and rectangles.
A345761
a(n) is the number of distinct numbers of orthogonal diagonal mates that a diagonal Latin squares of order n can have.
Original entry on oeis.org
1, 0, 0, 1, 2, 1, 3, 31, 99
Offset: 1
For n=7 the number of orthogonal diagonal Latin squares that a diagonal Latin square of order 7 may have is 0, 1, or 3. Since there are 3 distinct values, a(7)=3.
- Eduard I. Vatutin, About the spectra of numerical characteristics of diagonal Latin squares of orders 1-7 (in Russian).
- Eduard I. Vatutin, About the spectra of numerical characteristics of diagonal Latin squares of order 8 (in Russian).
- Eduard I. Vatutin, About the spectrum of orthogonal diagonal Latin squares for one diagonal Latin squares of order 9 (in Russian).
- Eduard I. Vatutin, About the lower bound for a spectrum of orthogonal diagonal Latin squares for one diagonal Latin squares of order 10 (in Russian).
- Eduard I. Vatutin, About the lower bound for a spectrum of orthogonal diagonal Latin squares for one diagonal Latin squares of order 11 (in Russian).
- Eduard I. Vatutin, Graphical representation of the spectra.
- E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order, Intellectual and Information Systems (Intellect - 2021). Tula, 2021. pp. 7-17. (in Russian)
- E. I. Vatutin, V. S. Titov, A. I. Pykhtin, A. V. Kripachev, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, Estimation of the Cardinalities of the Spectra of Fast-computable Numerical Characteristics for Diagonal Latin Squares of Orders N>9 (in Russian) // Science and education in the development of industrial, social and economic spheres of Russian regions. Murom, 2022. pp. 314-315.
- E. I. Vatutin, V. S. Titov, A. I. Pykhtin, A. V. Kripachev, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan, I. I. Kurochkin, Heuristic method for getting approximations of spectra of numerical characteristics for diagonal Latin squares, Intellectual information systems: trends, problems, prospects, Kursk, 2022. pp. 35-41. (in Russian)
- Eduard I. Vatutin, Proving lists (1, 4, 5, 6, 7, 8, 9, 10, 11, 12).
- Index entries for sequences related to Latin squares and rectangles.
A382272
Maximum number of orthogonal diagonal Latin squares with the first row in ascending order that can be orthogonal to a given Brown's diagonal Latin square of order 2n.
Original entry on oeis.org
0, 1, 0, 824, 8
Offset: 1
Showing 1-5 of 5 results.
Comments