cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A330391 Number of main classes of diagonal Latin squares of order n with at least one orthogonal diagonal mate.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 5, 1105, 75307
Offset: 1

Views

Author

Eduard I. Vatutin, Feb 25 2020

Keywords

Crossrefs

Formula

a(n) = A287764(n) - A337309(n).

Extensions

a(9) added by Eduard I. Vatutin, Dec 12 2020

A001438 Maximal number of mutually orthogonal Latin squares (or MOLS) of order n.

Original entry on oeis.org

1, 2, 3, 4, 1, 6, 7, 8
Offset: 2

Views

Author

Keywords

Comments

By convention, a(0) = a(1) = infinity.
Parker and others conjecture that a(10) = 2.
It is also known that a(11) = 10, a(12) >= 5.
It is known that a(n) >= 2 for all n > 6, disproving a conjecture by Euler that a(4k+2) = 1 for all k. - Jeppe Stig Nielsen, May 13 2020

References

  • CRC Handbook of Combinatorial Designs, 1996, pp. 113ff.
  • S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Arrays, Springer-Verlag, NY, 1999, Chapter 8.
  • E. T. Parker, Attempts for orthogonal latin 10-squares, Abstracts Amer. Math. Soc., Vol. 12 1991 #91T-05-27.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1997, p. 58.

Crossrefs

Formula

a(n) <= n-1 for all n>1. - Tom Edgar, Apr 27 2015
a(p^k) = p^k-1 for all primes p and k>0. - Tom Edgar, Apr 27 2015
a(n) = A107431(n,n) - 2. - Floris P. van Doorn, Sep 10 2019

A328873 Maximal size of a set of pairwise mutually orthogonal diagonal Latin squares of order n.

Original entry on oeis.org

1, 0, 0, 2, 2, 1, 4, 6, 6
Offset: 1

Views

Author

Eduard I. Vatutin, Oct 29 2019

Keywords

Comments

From Andrew Howroyd, Nov 08 2019: (Start)
A diagonal Latin square of order n is an n X n array with every integer from 0 to n-1 in every row, every column, and both main diagonals.
Of course if even one example exists, then a(n) >= 1.
A274806 gives the number of diagonal Latin squares and A274806(6) is nonzero. This suggests that although it is not possible to have a pair of orthogonal diagonal Latin squares, a(6) should be 1 here. (End)
a(1) = 1 because there is only one (trivial) diagonal Latin square of order 1. It is orthogonal to itself, so if we allow the consideration of multiple copies of the same diagonal Latin square, we get a(1) = infinity instead.
From Eduard I. Vatutin, Mar 27 2021: (Start)
a(n) <= A287695(n) + 1.
a(p) >= A123565(p) = p-3 for all odd prime p due to existence of clique from cyclic MODLS of order p with at least A123565(p) items. It seems that for some orders p clique from cyclic MODLS can be extended by adding none cyclic DLS that are orthogonal to all cyclic DLS. (End)
a(n) <= A001438(n). - Max Alekseyev, Nov 08 2019
a(10) >= 2; a(11) >= 8; a(12) >= 4; a(13) >= 10; a(14) >= 2; a(15) >= 4. - Natalia Makarova, Sep 03 2020; updated May 30 2021
a(16) >= 14, a(17) >= 14, a(18) >= 2, a(19) >= 16, a(20) >= 2. - Natalia Makarova, Jan 08 2021

Examples

			Orthogonal pair of Diagonal Latin squares of order 18:
   1  5 15 16 17 18  2 14  4 13  3  7 12 10  8  6 11  9
   8  2  6 15 16 17 18  1  5 14  4 13 11  9  7 12 10  3
  14  9  3  7 15 16 17  2  6  1  5 12 10  8 13 11  4 18
  13  1 10  4  8 15 16  3  7  2  6 11  9 14 12  5 18 17
  12 14  2 11  5  9 15  4  8  3  7 10  1 13  6 18 17 16
  11 13  1  3 12  6 10  5  9  4  8  2 14  7 18 17 16 15
   3 12 14  2  4 13  7  6 10  5  9  1  8 18 17 16 15 11
   9 10 11 12 13 14  1 15 16 17 18  8  7  6  5  4  3  2
   6  7  8  9 10 11 12 18 17 16 15  5  4  3  2  1 14 13
   5  6  7  8  9 10 11 16 15 18 17  4  3  2  1 14 13 12
   7  8  9 10 11 12 13 17 18 15 16  6  5  4  3  2  1 14
   4 15 16 17 18  1  8 13  3 12  2 14  6 11  9  7  5 10
  15 16 17 18 14  7  9 12  2 11  1  3 13  5 10  8  6  4
  16 17 18 13  6  8  3 11  1 10 14 15  2 12  4  9  7  5
  17 18 12  5  7  2  4 10 14  9 13 16 15  1 11  3  8  6
  18 11  4  6  1  3  5  9 13  8 12 17 16 15 14 10  2  7
  10  3  5 14  2  4  6  8 12  7 11 18 17 16 15 13  9  1
   2  4 13  1  3  5 14  7 11  6 10  9 18 17 16 15 12  8
and
   1  8 14 13 12 11  3  9  6  5  7  4 15 16 17 18 10  2
   5  2  9  1 14 13 12 10  7  6  8 15 16 17 18 11  3  4
  15  6  3 10  2  1 14 11  8  7  9 16 17 18 12  4  5 13
  16 15  7  4 11  3  2 12  9  8 10 17 18 13  5  6 14  1
  17 16 15  8  5 12  4 13 10  9 11 18 14  6  7  1  2  3
  18 17 16 15  9  6 13 14 11 10 12  1  7  8  2  3  4  5
   2 18 17 16 15 10  7  1 12 11 13  8  9  3  4  5  6 14
  14  1  2  3  4  5  6 15 16 17 18 13 12 11 10  9  8  7
   4  5  6  7  8  9 10 17 18 15 16  3  2  1 14 13 12 11
  13 14  1  2  3  4  5 18 17 16 15 12 11 10  9  8  7  6
   3  4  5  6  7  8  9 16 15 18 17  2  1 14 13 12 11 10
   7 13 12 11 10  2  1  8  5  4  6 14  3 15 16 17 18  9
  12 11 10  9  1 14  8  7  4  3  5  6 13  2 15 16 17 18
  10  9  8 14 13  7 18  6  3  2  4 11  5 12  1 15 16 17
   8  7 13 12  6 18 17  5  2  1  3  9 10  4 11 14 15 16
   6 12 11  5 18 17 16  4  1 14  2  7  8  9  3 10 13 15
  11 10  4 18 17 16 15  3 14 13  1  5  6  7  8  2  9 12
   9  3 18 17 16 15 11  2 13 12 14 10  4  5  6  7  1  8
so a(18) >= 2.
		

Crossrefs

Extensions

a(6) corrected by Max Alekseyev and Andrew Howroyd, Nov 08 2019
a(9) added by Eduard I. Vatutin, Feb 02 2021

A345761 a(n) is the number of distinct numbers of orthogonal diagonal mates that a diagonal Latin squares of order n can have.

Original entry on oeis.org

1, 0, 0, 1, 2, 1, 3, 31, 99
Offset: 1

Views

Author

Eduard I. Vatutin, Jun 26 2021

Keywords

Comments

a(n) <= A287695(n) + 1.
a(n) <= A287764(n).
a(10) >= 10. It seems that a(10) = 10 due to long computational experiments within the Gerasim@Home volunteer distributed computing project did not reveal the existence of diagonal Latin squares of order 10 with the number of orthogonal diagonal Latin squares different from {0, 1, 2, 3, 4, 5, 6, 7, 8, 10}.
a(11) >= 112, a(12) >= 5079. - Eduard I. Vatutin, Nov 02 2021, updated Jan 23 2023

Examples

			For n=7 the number of orthogonal diagonal Latin squares that a diagonal Latin square of order 7 may have is 0, 1, or 3. Since there are 3 distinct values, a(7)=3.
		

Crossrefs

A382272 Maximum number of orthogonal diagonal Latin squares with the first row in ascending order that can be orthogonal to a given Brown's diagonal Latin square of order 2n.

Original entry on oeis.org

0, 1, 0, 824, 8
Offset: 1

Views

Author

Eduard I. Vatutin, Mar 20 2025

Keywords

Comments

A Brown's diagonal Latin square is a horizontally symmetric row-inverse or vertically symmetric column-inverse diagonal Latin square (see A339641).
Brown's diagonal Latin squares are special case of plain symmetry diagonal Latin squares that do not exist for odd orders.
a(6)>=1764493860.

Crossrefs

Showing 1-5 of 5 results.