cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001465 Number of degree-n odd permutations of order 2.

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 30, 126, 448, 1296, 4140, 17380, 76296, 296088, 1126216, 4940040, 23904000, 110455936, 489602448, 2313783216, 11960299360, 61878663840, 309644323296, 1587272962528, 8699800221696, 48793502304000, 268603261201600, 1487663739072576
Offset: 0

Views

Author

Keywords

Comments

Number of even partitions of an n-element set avoiding the pattern 123 (see Goyt paper). - Ralf Stephan, May 08 2007

Examples

			For n=3, a(3)=3 and (1,2), (1, 3), (2, 3) are all the degree-2 odd permutations of order 2. - _Luis Manuel Rivera Martínez_, May 22 2018
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, (n-1)*n/2,
          ((2*n-3)*a(n-1)-(n-1)*a(n-2))/(n-2)+(n-1)*(n-3)*a(n-4))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, May 24 2018
  • Mathematica
    Table[Sum[Binomial[n , 4 i + 2] (4 i + 2)!/(2^(2 i + 1) (2 i + 1)!), {i, 0, Floor[(n - 2)/4]}], {n, 0, 22}] (* Luis Manuel Rivera Martínez, May 22 2018 *)

Formula

a(n) = Sum_{i=0..floor((n-2)/4)} C(n,4i+2)*(4i+2)!/(4i+2)!!. - Ralf Stephan, May 08 2007
Conjecture: a(n) -3*a(n-1) +3*a(n-2) -a(n-3) -(n-1)*(n-3)*a(n-4) +(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, May 30 2014
From Jianing Song, Oct 24 2020: (Start)
E.g.f.: exp(x)*sinh(x^2/2).
a(n) = A000085(n) - A000704(n). (End)

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 11 2004