A001465 Number of degree-n odd permutations of order 2.
0, 0, 1, 3, 6, 10, 30, 126, 448, 1296, 4140, 17380, 76296, 296088, 1126216, 4940040, 23904000, 110455936, 489602448, 2313783216, 11960299360, 61878663840, 309644323296, 1587272962528, 8699800221696, 48793502304000, 268603261201600, 1487663739072576
Offset: 0
Keywords
Examples
For n=3, a(3)=3 and (1,2), (1, 3), (2, 3) are all the degree-2 odd permutations of order 2. - _Luis Manuel Rivera Martínez_, May 22 2018
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..800
- Lev Glebsky, Melany Licón, and Luis Manuel Rivera, On the number of even roots of permutations, arXiv:1907.00548 [math.CO], 2019.
- A. M. Goyt, Avoidance of partitions of a 3-element set, arXiv:math/0603481 [math.CO], 2006-2007.
- L. Moser and M. Wyman, On solutions of x^d = 1 in symmetric groups, Canad. J. Math., 7 (1955), 159-168.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<4, (n-1)*n/2, ((2*n-3)*a(n-1)-(n-1)*a(n-2))/(n-2)+(n-1)*(n-3)*a(n-4)) end: seq(a(n), n=0..30); # Alois P. Heinz, May 24 2018
-
Mathematica
Table[Sum[Binomial[n , 4 i + 2] (4 i + 2)!/(2^(2 i + 1) (2 i + 1)!), {i, 0, Floor[(n - 2)/4]}], {n, 0, 22}] (* Luis Manuel Rivera Martínez, May 22 2018 *)
Formula
a(n) = Sum_{i=0..floor((n-2)/4)} C(n,4i+2)*(4i+2)!/(4i+2)!!. - Ralf Stephan, May 08 2007
Conjecture: a(n) -3*a(n-1) +3*a(n-2) -a(n-3) -(n-1)*(n-3)*a(n-4) +(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, May 30 2014
From Jianing Song, Oct 24 2020: (Start)
E.g.f.: exp(x)*sinh(x^2/2).
Extensions
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 11 2004
Comments