cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001471 Number of degree-n permutations of order exactly 3.

Original entry on oeis.org

0, 0, 0, 2, 8, 20, 80, 350, 1232, 5768, 31040, 142010, 776600, 4874012, 27027728, 168369110, 1191911840, 7678566800, 53474964992, 418199988338, 3044269834280, 23364756531620, 199008751634000, 1605461415071822
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of non-symmetric permutation matrices A of dimension n such that A^2 is the transpose of A. - Torlach Rush, Jul 09 2020

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^3/3) )); [Factorial(n-1)*b[n]-1: n in [1..m]]; // G. C. Greubel, May 14 2019
    
  • Mathematica
    a[n_] := HypergeometricPFQ[{1/3-n/3, 2/3-n/3, -n/3}, {}, -9] - 1; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Oct 19 2011 *)
    nxt[{n_,a_,b_,c_}]:={n+1,b,c,c+(1+a)(n-1)(n-2)}; NestList[nxt,{3,0,0,0},25][[;;,2]] (* Harvey P. Dale, Mar 09 2024 *)
  • PARI
    a(n)=sum(j=1,n\3, n!/(j!*(n-3*j)!*(3^j))) \\ Charles R Greathouse IV, Jun 21 2017
    
  • PARI
    first(n)=my(v=vector(n+1)); for(i=3,n, v[i+1]=v[i] + (1+v[i-2])*(i-1)*(i-2)); v \\ Charles R Greathouse IV, Jul 10 2020
    
  • Sage
    m = 30; T = taylor(exp(x + x^3/3) -exp(x), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 14 2019

Formula

From Henry Bottomley, Jan 26 2001: (Start)
a(n) = a(n-1) + (1 + a(n-3))*(n-1)(n-2).
a(n) = Sum_{j=1..floor(n/3)} n!/(j!*(n-3*j)!*(3^j)).
a(n) = A001470(n) - 1. (End)
E.g.f.: exp(x + x^3/3) - exp(x).