A001483 Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^5 in powers of x.
1, -5, 10, -10, 0, 19, -35, 40, -25, -10, 45, -75, 80, -60, 15, 45, -85, 115, -115, 90, -21, -35, 95, -130, 135, -135, 70, -35, -65, 105, -146, 120, -150, 90, -65, -25, 90, -115, 150, -125, 130, -45, 80, 35, -5, 160, -110, 170, -85, 95, 25, 50, 0, -60, 95, -116, 120, -135
Offset: 5
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 5..10000
- H. Gupta, On the coefficients of the powers of Dedekind's modular form, J. London Math. Soc., 39 (1964), 433-440.
- H. Gupta, On the coefficients of the powers of Dedekind's modular form (annotated and scanned copy)
Programs
-
Magma
m:=102; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^5 )); // G. C. Greubel, Sep 04 2023 -
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d] [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n) end: b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))) end: a:= n-> b(n, 5): seq(a(n), n=5..62); # Alois P. Heinz, Feb 07 2021
-
Mathematica
nmax = 62; CoefficientList[Series[(Product[(1 - (-x)^j), {j, 1, nmax}] - 1)^5, {x, 0, nmax}], x] // Drop[#, 5] & (* Ilya Gutkovskiy, Feb 07 2021 *) Drop[CoefficientList[Series[(QPochhammer[-x] -1)^5, {x,0,102}], x], 5] (* G. C. Greubel, Sep 04 2023 *)
-
PARI
my(N=70,x='x+O('x^N)); Vec((eta(-x)-1)^5) \\ Joerg Arndt, Sep 04 2023
-
SageMath
m=100; k=5; def f(k,x): return (-1 + product( (1+x^j)*(1-x^(2*j))/(1+x^(2*j)) for j in range(1,m+2) ) )^k def A001483_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( f(k,x) ).list() a=A001483_list(m); a[k:] # G. C. Greubel, Sep 04 2023
Formula
a(n) = [x^n]( QPochhammer(-x) - 1 )^5. - G. C. Greubel, Sep 04 2023
Extensions
Definition and offset edited by Ilya Gutkovskiy, Feb 07 2021