cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001501 Number of n X n 0-1 matrices with all column and row sums equal to 3.

Original entry on oeis.org

1, 0, 0, 1, 24, 2040, 297200, 68938800, 24046189440, 12025780892160, 8302816499443200, 7673688777463632000, 9254768770160124288000, 14255616537578735986867200, 27537152449960680597739468800, 65662040698002721810659005184000
Offset: 0

Views

Author

Keywords

Comments

Also, for n >= 3, number of bicubical graphs on 2n labeled nodes of two colors [Read, 1958, 1971] - N. J. A. Sloane, Sep 08 2014
Also number of ways to arrange 3n rooks on an n X n chessboard, with no more than 3 rooks in each row and column (no 4 in a line). - Vaclav Kotesovec, Aug 03 2013

Examples

			G.f. = 1 + x^3 + 24*x^4 + 2040*x^5 + 297200*x^6 + 68938800*x^7 + ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 236, P(n,3).
  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986; see Example 1.1.3, page 2, f(n).
  • M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements. Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970.

Crossrefs

Cf. A001499. Column 3 of A008300. Row sums of A284990.

Programs

  • Maple
    a:= n-> n!^2/6^n *add(add((-1)^b *2^a *3^b *(3*n-3*a-2*b)!/
            (a! *b! *(n-a-b)!^2 *6^(n-a-b)), b=0..n-a), a=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 20 2011
    # second Maple program:
    a:= proc(n) option remember; `if`(n<4, (n-1)*(n-2)/2,
          n*(n-1)*(9*(3*n^2-5*n+4)*a(n-1)+(3*n-6)*(3*n+1)*
          (n-1)*a(n-2)+(9*n^2-30*n+13)*(n-1)*(n-2)^2*a(n-3)
          -(3*n-2)*(n-1)*(n-2)^2*(n-3)^2*a(n-4))/(36*n-60))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 13 2017
  • Mathematica
    Table[6^(-n) Total[Map[(-1)^#[[2]] n!^2 (#[[2]] + 3 #[[3]])! 2^#[[1]] 3^#[[2]]/(#[[1]]! #[[2]]! #[[3]]!^2 6^#[[3]]) &, Compositions[n, 3]]], {n, 0, 20}] (* Geoffrey Critzer, Mar 19 2011 *)
    a[n_] := n!^2*Sum[2^(2k-n)*3^(k-n)*(3(n-k))!*HypergeometricPFQ[{k-n, k-n}, {3(k-n)/2, 1/2 + 3(k-n)/2}, -9/2]/(k! (n-k )!^2), {k, 0, n}]/6^n;
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 07 2018 *)
  • PARI
    {a(n) = local(k); if( n<0, 0, n!^2 * sum(j=0, n, sum(i=0, n-j, if(1, k=n-i-j; (j + 3*k)! / (3^i * 36^k * i! * k!^2))) / (j! * (-2)^j)))}; /* Michael Somos, May 28 2002 */

Formula

a(n) = n!^2/6^n * Sum_{a=0..n} Sum_{b=0..n-a} (-1)^b * 2^a * 3^b * (3*n-3*a-2*b)! / (a! * b! * (n-a-b)!^2 * 6^(n-a-b)). - Shanzhen Gao, Feb 19 2010
D-finite with recurrence: 12*(3*n-5)*a(n) = 9*n*(3*n^2-5*n+4)*(n-1)*a(n-1) + 3*(n-2)*n*(3*n+1)*(n-1)^2*a(n-2) + (n-2)^2*n*(9*n^2-30*n+13)*(n-1)^2*a(n-3) - (n-3)^2*(n-2)^2*n*(3*n-2)*(n-1)^2*a(n-4). - Vaclav Kotesovec, Aug 03 2013
a(n) ~ sqrt(6*Pi) * (3/4)^n * n^(3*n+1/2) / exp(3*n+2). - Vaclav Kotesovec, Aug 03 2013

Extensions

Additional comments from Michael Somos, May 28 2002