A001543 a(0) = 1, a(n) = 5 + Product_{i=0..n-1} a(i) for n > 0.
1, 6, 11, 71, 4691, 21982031, 483209576974811, 233491495280173380882643611671, 54518278368171228201482876236565907627201914279213829353891
Offset: 0
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..12
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- S. W. Golomb, On certain nonlinear recurring sequences, Amer. Math. Monthly 70 (1963), 403-405.
- R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012. - _N. J. A. Sloane_, Jun 13 2012
- S. Mustonen, On integer sequences with mutual k-residues
- Seppo Mustonen, On integer sequences with mutual k-residues [Local copy]
- Index entries for sequences of form a(n+1)=a(n)^2 + ...
Crossrefs
Column k=5 of A177888.
Programs
-
Mathematica
Flatten[{1,RecurrenceTable[{a[1]==6, a[n]==a[n-1]*(a[n-1]-5)+5}, a, {n, 1, 10}]}] (* Vaclav Kotesovec, Dec 17 2014 *) Join[{1},NestList[#(#-5)+5&,6,10]] (* Harvey P. Dale, Oct 10 2016 *)
-
PARI
{ print1("1, 6"); n=6; m=Mod(5,6); for(i=2,9, n=m.mod+lift(m); m=chinese(m,Mod(5,n)); print1(", "n) ) } \\ Charles R Greathouse IV, Dec 09 2011
Formula
a(n) = a(n-1) * (a(n-1) - 5) + 5. - Charles R Greathouse IV, Dec 09 2011
a(n) ~ c^(2^n), where c = 1.696053774403103324180661918166106455311376345474042496749974632237971081462... . - Vaclav Kotesovec, Dec 17 2014
Extensions
New name from Alonso del Arte, Dec 09 2011
Comments