cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001543 a(0) = 1, a(n) = 5 + Product_{i=0..n-1} a(i) for n > 0.

Original entry on oeis.org

1, 6, 11, 71, 4691, 21982031, 483209576974811, 233491495280173380882643611671, 54518278368171228201482876236565907627201914279213829353891
Offset: 0

Views

Author

Keywords

Comments

This is the special case k=5 of sequences with exact mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))=k, i=1,...,n-1}. k=1 gives Sylvester's sequence A000058 and k=2 Fermat sequence A000215. - Seppo Mustonen, Sep 04 2005

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=5 of A177888.

Programs

  • Mathematica
    Flatten[{1,RecurrenceTable[{a[1]==6, a[n]==a[n-1]*(a[n-1]-5)+5}, a, {n, 1, 10}]}] (* Vaclav Kotesovec, Dec 17 2014 *)
    Join[{1},NestList[#(#-5)+5&,6,10]] (* Harvey P. Dale, Oct 10 2016 *)
  • PARI
    {
      print1("1, 6");
      n=6;
      m=Mod(5,6);
      for(i=2,9,
        n=m.mod+lift(m);
        m=chinese(m,Mod(5,n));
        print1(", "n)
      )
    } \\ Charles R Greathouse IV, Dec 09 2011

Formula

a(n) = a(n-1) * (a(n-1) - 5) + 5. - Charles R Greathouse IV, Dec 09 2011
a(n) ~ c^(2^n), where c = 1.696053774403103324180661918166106455311376345474042496749974632237971081462... . - Vaclav Kotesovec, Dec 17 2014

Extensions

New name from Alonso del Arte, Dec 09 2011