A001551 a(n) = 1^n + 2^n + 3^n + 4^n.
4, 10, 30, 100, 354, 1300, 4890, 18700, 72354, 282340, 1108650, 4373500, 17312754, 68711380, 273234810, 1088123500, 4338079554, 17309140420, 69107159370, 276040692700, 1102999460754, 4408508961460, 17623571298330, 70462895745100, 281757423024354
Offset: 0
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 364
- C. J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq. 16 (2013) #13.5.7.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (10,-35,50,-24).
Crossrefs
Column 4 of array A103438.
Programs
-
Maple
A001551:=-2*(5*z-2)*(5*z**2-5*z+1)/(z-1)/(3*z-1)/(2*z-1)/(4*z-1); # conjectured by Simon Plouffe in his 1992 dissertation
-
Mathematica
Table[Total[Range[4]^n], {n, 0, 40}] (* T. D. Noe, Oct 10 2011 *)
-
Sage
[3**n + sigma(4, n) for n in range(23)] # Zerinvary Lajos, Jun 04 2009
Formula
From Wolfdieter Lang, Oct 10 2011: (Start)
E.g.f.: (1-exp(4*x))/(exp(-x)-1) = Sum_{j=1..4} exp(j*x) (trivial).
O.g.f.: 2*(2-5*x)*(1-5*x+5*x^2)/(Product_{j=1..4} (1-j*x)) (via Laplace transformation of the o.g.f., and partial fraction decomposition backwards). See the Maple Program for the o.g.f. conjecture by Simon Plouffe. This has now been proved. (End)
Comments