A001556 a(n) = 1^n + 2^n + ... + 9^n.
9, 45, 285, 2025, 15333, 120825, 978405, 8080425, 67731333, 574304985, 4914341925, 42364319625, 367428536133, 3202860761145, 28037802953445, 246324856379625, 2170706132009733, 19179318935377305, 169842891165484965, 1506994510201252425
Offset: 0
Keywords
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 369
- Index entries for linear recurrences with constant coefficients, signature (45, -870, 9450, -63273, 269325, -723680, 1172700, -1026576, 362880).
Programs
-
Mathematica
Table[Total[Range[9]^n], {n, 0, 20}] (* T. D. Noe, Aug 09 2012 *)
Formula
a(n) = sum_{j=1..9} j^n, n>=0.
From Wolfdieter Lang, Oct 15 2011: (Start)
E.g.f.: (1-exp(9*x))/(exp(-x)-1) = sum(exp(j*x),j=1..9) (trivial).
O.g.f.: (9 - 360*x + 6090*x^2 - 56700*x^3 + 316365*x^4 - 1077300*x^5 + 2171040*x^6 - 2345400*x^7 + 1026576*x^8)/product_{j=1..9} (1-j*x).
From the e.g.f. via Laplace transformation. See the proof in a link under A196837.
(End)
Extensions
More terms from Jon E. Schoenfield, Mar 24 2010
Comments