cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001556 a(n) = 1^n + 2^n + ... + 9^n.

Original entry on oeis.org

9, 45, 285, 2025, 15333, 120825, 978405, 8080425, 67731333, 574304985, 4914341925, 42364319625, 367428536133, 3202860761145, 28037802953445, 246324856379625, 2170706132009733, 19179318935377305, 169842891165484965, 1506994510201252425
Offset: 0

Views

Author

Keywords

Comments

Conjectures for o.g.f.s for this type of sequences appear in the PhD thesis by Simon Plouffe. See A001552 for the reference. These conjectures are proved in the link given in A196837. - Wolfdieter Lang, Oct 15 2011

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 9 of array A103438. A196837.

Programs

  • Mathematica
    Table[Total[Range[9]^n], {n, 0, 20}] (* T. D. Noe, Aug 09 2012 *)

Formula

a(n) = sum_{j=1..9} j^n, n>=0.
From Wolfdieter Lang, Oct 15 2011: (Start)
E.g.f.: (1-exp(9*x))/(exp(-x)-1) = sum(exp(j*x),j=1..9) (trivial).
O.g.f.: (9 - 360*x + 6090*x^2 - 56700*x^3 + 316365*x^4 - 1077300*x^5 + 2171040*x^6 - 2345400*x^7 + 1026576*x^8)/product_{j=1..9} (1-j*x).
From the e.g.f. via Laplace transformation. See the proof in a link under A196837.
(End)
a(n) = A001555(n) + A001019(n). - Michel Marcus, Jul 26 2013

Extensions

More terms from Jon E. Schoenfield, Mar 24 2010