cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A001604 Odd-indexed terms of A124297.

Original entry on oeis.org

11, 31, 151, 911, 5951, 40051, 272611, 1863551, 12760031, 87424711, 599129311, 4106261531, 28144128251, 192901135711, 1322159893351, 9062207833151, 62113268013311, 425730597768451, 2918000731816531, 20000274041790911, 137083916295800111, 939587136717207031, 6440026032054760351
Offset: 0

Views

Author

Keywords

Comments

Old name: Related to factors of Fibonacci numbers.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A001604:=-(11-90*z+173*z**2-90*z**3+11*z**4)/(z-1)/(z**2-3*z+1)/(z**2-7*z+1); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
  • Mathematica
    5 #^2 + 5 # + 1 &@ Fibonacci@ # & /@ Range[1, 45, 2] (* Michael De Vlieger, Apr 03 2017 *)

Formula

G.f.: -(11-90*x+173*x^2-90*x^3+11*x^4)/((x-1)*(x^2-3*x+1)*(x^2-7*x+1)). [After Simon Plouffe]
a(n) = (5+sqrt(5))/2*((3+sqrt(5))/2)^n+(5-sqrt(5))/2*((3-sqrt(5))/2)^n+(3+sqrt(5))/2*((7+3*sqrt(5))/2)^n+(3-sqrt(5))/2*((7-3*sqrt(5))/2)^n+3. [Tim Monahan, Aug 15 2011]

Extensions

Entry revised by Michel Marcus and N. J. A. Sloane, Jun 06 2015

A156094 5 F(2n) (F(2n) - 1) + 1 where F(n) denotes the n-th Fibonacci number.

Original entry on oeis.org

1, 1, 31, 281, 2101, 14851, 102961, 708761, 4865911, 33372361, 228792301, 1568309051, 10749725281, 73680695281, 505017569551, 3461448647801, 23725139605861, 162614572159411, 1114576979567761, 7639424583421961, 52361395886149351
Offset: 0

Views

Author

Stuart Clary, Feb 04 2009

Keywords

Comments

Natural bilateral extension (brackets mark index 0): ..., 15401, 2311, 361, 61, 11, [1], 1, 31, 281, 2101, 14851, ... This is A156095-reversed followed by A156094, without repeating the central 1. That is, A156094(-n) = A156095(n).

Crossrefs

Programs

  • Mathematica
    a[n_Integer] := 5 Fibonacci[2n] (Fibonacci[2n] - 1) + 1
    5(#*(#-1))&/@Fibonacci[Range[0,40,2]]+1 (* Harvey P. Dale, Jan 06 2013 *)

Formula

Let F(n) be the Fibonacci number A000045(n) and let L(n) be the Lucas number A000032(n).
Alternate formula: a(n) = L(4n) - 5 F(2n) - 1.
Recurrence: a(n) - 10 a(n-1) + 23 a(n-2) - 10 a(n-3) + a(n-4) = -5.
Recurrence: a(n) - 11 a(n-1) + 33 a(n-2) - 33 a(n-3) + 11 a(n-4) - a(n-5) = 0.
G.f.: A(x) = (1 - 10 x + 53 x^2 - 60 x^3 + 11 x^4)/(1 - 11 x + 33 x^2 - 33 x^3 + 11 x^4 - x^5) = (1 - 10 x + 53 x^2 - 60 x^3 + 11 x^4)/((1 - x) (1 - 7 x + x^2) (1 - 3 x + x^2)).
a(n)=A056854(n)-5*A001906(n)-1. - R. J. Mathar, Feb 23 2009
a(n)=((2*sqrt(5))/2)*(((3-sqrt(5))/2)^n-((3+sqrt(5))/2)^n)+((7+3*sqrt(5))/2)^n+((7-3*sqrt(5))/2)^n-1. - Tim Monahan, Aug 15 2011

A156095 5 F(2n) (F(2n) + 1) + 1 where F(n) denotes the n-th Fibonacci number.

Original entry on oeis.org

1, 11, 61, 361, 2311, 15401, 104401, 712531, 4875781, 33398201, 228859951, 1568486161, 10750188961, 73681909211, 505020747661, 3461456968201, 23725161388951, 162614629188281, 1114577128871281, 7639424974303651, 52361396909490901
Offset: 0

Views

Author

Stuart Clary, Feb 04 2009

Keywords

Comments

Natural bilateral extension (brackets mark index 0): ..., 14851, 2101, 281, 31, 1, [1], 11, 61, 361, 2311, 15401, ... This is A156095-reversed followed by A156095, without repeating the central 1. That is, A156095(-n) = A156094(n).

Crossrefs

Programs

  • Mathematica
    a[n_Integer] := 5 Fibonacci[2n] (Fibonacci[2n] + 1) + 1

Formula

Let F(n) be the Fibonacci number A000045(n) and let L(n) be the Lucas number A000032(n).
Alternate formula: a(n) = L(4n) + 5 F(2n) - 1.
Recurrence: a(n) - 10 a(n-1) + 23 a(n-2) - 10 a(n-3) + a(n-4) = -5.
Recurrence: a(n) - 11 a(n-1) + 33 a(n-2) - 33 a(n-3) + 11 a(n-4) - a(n-5) = 0.
G.f.: A(x) = (1 - 27 x^2 + 20 x^3 + x^4)/(1 - 11 x + 33 x^2 - 33 x^3 + 11 x^4 - x^5) = (1 - 27 x^2 + 20 x^3 + x^4)/((1 - x) (1 - 7 x + x^2) (1 - 3 x + x^2)).
a(n)=((2*sqrt(5))/2)*(((3+sqrt(5))/2)^n-((3-sqrt(5))/2)^n)+((7+3*sqrt(5))/2)^n+((7-3*sqrt(5))/2)^n-1. - Tim Monahan, Aug 15 2011
Showing 1-3 of 3 results.