cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001616 Number of parabolic vertices of Gamma_0(n).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 4, 4, 2, 6, 2, 4, 4, 6, 2, 8, 2, 6, 4, 4, 2, 8, 6, 4, 6, 6, 2, 8, 2, 8, 4, 4, 4, 12, 2, 4, 4, 8, 2, 8, 2, 6, 8, 4, 2, 12, 8, 12, 4, 6, 2, 12, 4, 8, 4, 4, 2, 12, 2, 4, 8, 12, 4, 8, 2, 6, 4, 8, 2, 16, 2, 4, 12, 6, 4, 8, 2, 12, 12, 4, 2, 12, 4, 4, 4, 8, 2, 16, 4, 6, 4, 4, 4, 16
Offset: 1

Views

Author

Keywords

Comments

Number of inequivalent cusps of Gamma_0(n). - Michael Somos, May 08 2015

Examples

			G.f. = x + 2*x^2 + 2*x^3 + 3*x^4 + 2*x^5 + 4*x^6 + 2*x^7 + 4*x^8 + 4*x^9 + ...
		

References

  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 102.
  • Goro Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see p. 25, Eq. (4).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a001616 n = sum $ map a000010 $ zipWith gcd ds $ reverse ds
                where ds = a027750_row n
    -- Reinhard Zumkeller, Jun 23 2013
    
  • Maple
    with(numtheory); nupara := proc (n) local b, d; b := 0; for d to n do if modp(n,d) = 0 then b := b+eval(phi(gcd(d,n/d))) fi od; b end: # Gene Ward Smith, May 22 2006
  • Mathematica
    Table[ Plus@@Map[ EulerPhi[ GCD[ #1, n/#1 ] ]&, Select[ Range[ n ], (Mod[ n, #1 ]==0)& ] ], {n, 1, 100} ] (* Olivier Gérard, Aug 15 1997 *)
    a[ n_] := If[ n < 1, 0, Sum[ EulerPhi[ GCD[ d, n/d]], {d, Divisors@n}]]; (* Michael Somos, May 08 2015 *)
    f[p_, e_] := p^Floor[e/2] + p^Floor[(e-1)/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 28 2023 *)
  • PARI
    a(n)=sumdiv(n,d,eulerphi(gcd(d,n/d))); \\ Joerg Arndt, Jul 17 2011
    
  • Python
    from math import prod
    from sympy import factorint
    def A001616(n): return prod(p**(e>>1)+p**(e-1>>1) for p, e in factorint(n).items()) # Chai Wah Wu, Jul 05 2024

Formula

a(n) = Sum_{d|n} phi(gcd(d,n/d)), where phi() is Euler's totient function. - Joerg Arndt, Jul 17 2011
Multiplicative with a(p^e) = p^[e/2] + p^[(e-1)/2]. - David W. Wilson, Sep 01 2001

Extensions

More terms from Olivier Gérard, Aug 15 1997