cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A000086 Number of solutions to x^2 - x + 1 == 0 (mod n).

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Number of elliptic points of order 3 for Gamma_0(n).
Equivalently, number of fixed points of Gamma_0(n) of type rho.
Values are 0 or a power of 2.
Shadow transform of central polygonal numbers A002061. - Michel Marcus, Jun 06 2013
Empirical: a(n) == A001615(n) (mod 3) for all natural numbers n. - John M. Campbell, Apr 01 2018
From Jianing Song, Jul 03 2018: (Start)
The comment above is true. Since both a(n) and A001615(n) are multiplicative we just have to verify that for prime powers. Note that A001615(p^e) = (p+1)*p^(e-1). For p == 1 (mod 3), p+1 == 2 (mod 3) so (p+1)*p^(e-1) == 2 (mod 3); for p == 2 (mod 3), p+1 is a multiple of 3 so (p+1)*p^(e-1) == 0 (mod 3). For p = 3, if e = 1 then p+1 == 1 (mod 3); if e > 1 then (p+1)*p^(e-1) == 0 (mod 3).
Equivalently, number of solutions to x^2 + x + 1 == 0 (mod n). (End)

Examples

			G.f. = x + x^3 + 2*x^7 + 2*x^13 + 2*x^19 + 2*x^21 + 2*x^31 + 2*x^37 + 2*x^39 + ...
		

References

  • Bruno Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 101.
  • Goro Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see p. 25, Eq. (3).

Crossrefs

Cf. A341422 (without zeros).

Programs

  • Haskell
    a000086 n = if n `mod` 9 == 0 then 0
      else product $ map ((* 2) . a079978 . (+ 2)) $ a027748_row $ a038502 n
    -- Reinhard Zumkeller, Jun 23 2013
  • Maple
    with(numtheory); A000086 := proc (n) local d, s; if modp(n,9) = 0 then RETURN(0) fi; s := 1; for d in divisors(n) do if isprime(d) then s := s*(1+eval(legendre(-3,d))) fi od; s end: # Gene Ward Smith, May 22 2006
  • Mathematica
    Array[ Function[ n, If[ EvenQ[ n ] || Mod[ n, 9 ]==0, 0, Count[ Array[ Mod[ #^2-#+1, n ]&, n, 0 ], 0 ] ] ], 84 ]
    a[ n_] := If[ n < 1, 0, Length[ Select[ (#^2 - # + 1)/n & /@ Range[n], IntegerQ]]]; (* Michael Somos, Aug 14 2015 *)
    a[n_] := a[n] = Product[{p, e} = pe; Which[p==1 || p==3 && e==1, 1, p==3 && e>1, 0, Mod[p, 3]==1, 2, Mod[p, 3]==2, 0, True, a[p^e]], {pe, FactorInteger[n]}]; Array[a, 105] (* Jean-François Alcover, Oct 18 2018 *)
  • PARI
    {a(n) = if( n<1, 0, sum( x=0, n-1, (x^2 - x + 1)%n==0))}; \\ Nov 15 2002
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, if( p==3, 1 + X, if( p%3==2, 1, (1 + X) / (1 - X)))) [n])}; \\ Nov 15 2002
    

Formula

Multiplicative with a(p^e) = 1 if p = 3 and e = 1; 0 if p = 3 and e > 1; 2 if p == 1 (mod 3); 0 if p == 2 (mod 3). - David W. Wilson, Aug 01 2001
a(A226946(n)) = 0; a(A034017(n)) > 0. - Reinhard Zumkeller, Jun 23 2013
a(2*n) = a(3*n + 2) = a(9*n) = a(9*n + 6) = 0. - Michael Somos, Aug 14 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*sqrt(3)/(3*Pi) = 0.367552... (A165952). - Amiram Eldar, Oct 11 2022

A091401 Numbers n such that genus of group Gamma_0(n) is zero.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25
Offset: 1

Views

Author

N. J. A. Sloane, Mar 02 2004

Keywords

Comments

Equivalently, numbers n such that genus of modular curve X_0(n) is zero.

References

  • G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see Prop. 1.40 and 1.43.

Crossrefs

The table below is a consequence of Theorem 7.3 in Maier's paper.
N EntryID K alpha
1
2 A127776 4096 1
3 A276018 729 1
4 A002894 256 1
5 A276019 125 4
6 A093388 72 1
7 A276021 49 9
8 A081085 32 1
9 A006077 27 1
10 A276020 20 2
12 A276022 12 1
13 A276177 13 36
16 A276178 8 1
18 A276179 6 1
25 A276180 5 4

Programs

Formula

Numbers n such that A001617(n) = 0.

A001617 Genus of modular group Gamma_0(n). Or, genus of modular curve X_0(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 2, 2, 1, 0, 2, 1, 2, 2, 3, 2, 1, 3, 3, 3, 1, 2, 4, 3, 3, 3, 5, 3, 4, 3, 5, 4, 3, 1, 2, 5, 5, 4, 4, 5, 5, 5, 6, 5, 7, 4, 7, 5, 3, 5, 9, 5, 7, 7, 9, 6, 5, 5, 8, 5, 8, 7, 11, 6, 7, 4, 9, 7, 11, 7, 10, 9, 9, 7, 11, 7, 10, 9, 11, 9, 9, 7, 7, 9, 7, 8, 15
Offset: 1

Views

Author

Keywords

Comments

Also the dimension of the space of cusp forms of weight two and level n. - Gene Ward Smith, May 23 2006

Examples

			G.f. = x^11 + x^14 + x^15 + x^17 + x^19 + x^20 + x^21 + 2*x^22 + 2*x^23 + ...
		

References

  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 103.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    a := func< n | n lt 1 select 0 else Dimension( CuspForms( Gamma0(n), 2))>; /* Michael Somos, May 08 2015 */
    
  • Maple
    nu2 := proc (n) # number of elliptic points of order two (A000089) local i, s; if modp(n,4) = 0 then RETURN(0) fi; s := 1; for i in divisors(n) do if isprime(i) and i > 2 then s := s*(1+eval(legendre(-1,i))) fi od; s end:
    nu3 := proc (n) # number of elliptic points of order three (A000086) local d, s; if modp(n,9) = 0 then RETURN(0) fi; s := 1; for d in divisors(n) do if isprime(d) then s := s*(1+eval(legendre(-3,d))) fi od; s end:
    nupara := proc (n) # number of parabolic cusps (A001616) local b, d; b := 0; for d to n do if modp(n,d) = 0 then b := b+eval(phi(gcd(d,n/d))) fi od; b end:
    A001615 := proc(n) local i,j; j := n; for i in divisors(n) do if isprime(i) then j := j*(1+1/i); fi; od; j; end;
    genx := proc (n) # genus of X0(n) (A001617) #1+1/12*psi(n)-1/4*nu2(n)-1/3*nu3(n)-1/2*nupara(n) end: 1+1/12*A001615(n)-1/4*nu2(n)-1/3*nu3(n)-1/2*nupara(n) end: # Gene Ward Smith, May 23 2006
  • Mathematica
    nu2[n_] := Module[{i, s}, If[Mod[n, 4] == 0, Return[0]]; s = 1; Do[ If[ PrimeQ[i] && i > 2, s = s*(1 + JacobiSymbol[-1, i])], {i, Divisors[n]}]; s];
    nu3[n_] := Module[{d, s}, If[Mod[n, 9] == 0, Return[0]]; s = 1; Do[ If[ PrimeQ[d], s = s*(1 + JacobiSymbol[-3, d])], {d, Divisors[n]}]; s];
    nupara[n_] := Module[{b, d}, b = 0; For[d = 1, d <= n, d++, If[ Mod[n, d] == 0, b = b + EulerPhi[ GCD[d, n/d]]]]; b];
    A001615[n_] := Module[{i, j}, j = n; Do[ If[ PrimeQ[i], j = j*(1 + 1/i)], {i, Divisors[n]}]; j];
    genx[n_] := 1 + (1/12)*A001615[n] - (1/4)*nu2[n] - (1/3)*nu3[n] - (1/2)*nupara[n];
    A001617 = Table[ genx[n], {n, 1, 102}] (* Jean-François Alcover, Jan 04 2012, after Gene Ward Smith's Maple program *)
    a[ n_] := If[ n < 1, 0, 1 + Sum[ MoebiusMu[ d]^2 n/d / 12 - EulerPhi[ GCD[ d, n/d]] / 2, {d, Divisors @n}] - Count[(#^2 - # + 1)/n & /@ Range[n], ?IntegerQ]/3 - Count[ (#^2 + 1)/n & /@ Range[n], ?IntegerQ]/4]; (* Michael Somos, May 08 2015 *)
  • PARI
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k,1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k,1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k,1]+1)),
         h = prod(k=1, fsz, f[k,1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k,1]^(f[k,2]\2) + f[k,1]^((f[k,2]-1)\2));
    };
    a(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    vector(102, n, a(n))  \\ Gheorghe Coserea, May 20 2016

Formula

a(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2.
From Gheorghe Coserea, May 20 2016: (Start)
limsup a(n) / (n*log(log(n))) = exp(Euler)/(2*Pi^2), where Euler is A001620.
a(n) >= (n-5*sqrt(n)-8)/12, with equality iff n = p^2 for prime p=1 (mod 12) (see A068228).
a(n) < n * exp(Euler)/(2*Pi^2) * (log(log(n)) + 2/log(log(n))) for n>=3 (see Csirik link).
(End)

A124315 a(n) = Sum_{ d divides n } tau(gcd(d,n/d)), where tau = sigma_0 = A000005.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 6, 4, 4, 2, 8, 2, 4, 4, 9, 2, 8, 2, 8, 4, 4, 2, 12, 4, 4, 6, 8, 2, 8, 2, 12, 4, 4, 4, 16, 2, 4, 4, 12, 2, 8, 2, 8, 8, 4, 2, 18, 4, 8, 4, 8, 2, 12, 4, 12, 4, 4, 2, 16, 2, 4, 8, 16, 4, 8, 2, 8, 4, 8, 2, 24, 2, 4, 8, 8, 4, 8, 2, 18, 9, 4, 2, 16, 4, 4, 4, 12, 2, 16, 4, 8, 4, 4, 4, 24, 2, 8
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2006

Keywords

Comments

Apparently the Mobius transform of A046951. - R. J. Mathar, Feb 07 2011
Number of ordered pairs of divisors of n, (d1,d2), with d1<=d2, such that d1|d2 and n|(d1*d2). - Wesley Ivan Hurt, Mar 22 2022

Crossrefs

Programs

  • Maple
    A124315 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do igcd(d,n/d) ; a := a+numtheory[tau](%) ; end do: a; end proc: # R. J. Mathar, Apr 14 2011
  • Mathematica
    Table[Plus @@ Map[DivisorSigma[0, GCD[ #, n/# ]] &, Divisors@n], {n, 98}]
    f[p_, e_] := e + 1 + Floor[e^2/4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 10 2022 *)
  • PARI
    a(n) = sumdiv(n, d, numdiv(gcd(d, n/d))); \\ Michel Marcus, Feb 12 2016
    
  • Python
    from sympy import divisors, divisor_count, gcd
    def a(n): return sum([divisor_count(gcd(d, n/d)) for d in divisors(n)]) # Indranil Ghosh, May 25 2017

Formula

a(p) = 2 iff p is a prime.
Multiplicative with a(p^e) = e+1+floor(e^2/4). - R. J. Mathar, Apr 14 2011
Dirichlet g.f.: zeta(s)^2 * zeta(2*s). - Vaclav Kotesovec, Jan 11 2019
Sum_{k=1..n} a(k) ~ (Pi^2/6) * (n*log(n) + (2*gamma - 1 + 2*zeta'(2)/zeta(2))*n), where gamma is Euler's constant (A001620). - Amiram Eldar, Oct 22 2022

A276183 Genus of the quotient of the modular curve X_0(n) by the Fricke involution.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 2, 1, 1, 1, 2, 0, 1, 0, 0, 1, 2, 1, 1, 1, 1, 2, 3, 0, 3, 1, 2, 1, 1, 1, 3, 2, 2, 2, 4, 0, 2, 2, 2, 1, 3, 2, 5, 1, 2, 1, 4, 1, 4, 3, 3, 2, 4, 1, 4, 2, 4, 4, 4, 1, 3, 3, 2, 3, 3, 1, 7
Offset: 1

Views

Author

Gheorghe Coserea, Oct 21 2016

Keywords

Comments

a(n) is the genus of quotient space H/Gamma_0*(n), where H is the upper half plane and Gamma_0*(n) = Gamma_0(n) + W Gamma_0(n) is the extension of Gamma_0(n) via the involution z <-> W(z) = -n/z (see Cohn, 1988).

Examples

			G.f. = x^22 + x^28 + x^30 + x^33 + x^34 + x^37 + x^38 + x^40 + 2*x^42 + x^43 + x^44 + ...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := If[n < 1, 0, 1 + Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d, Divisors@ n}] - Count[(#^2 - # + 1)/n & /@ Range@ n, ?IntegerQ]/3 - Count[(#^2 + 1)/n & /@ Range@ n, ?IntegerQ]/4];
    g[n_] := Ceiling[k0 = k /. FindRoot[EllipticK[1 - k^2]/EllipticK[k^2] == Sqrt@ n, {k, 1/2, 10^-10, 1}, WorkingPrecision -> 600, MaxIterations -> 100]; Exponent[MinimalPolynomial[RootApproximant[k0^2, 24], x], x]/2];
    r[n_] := If[MemberQ[{3, 7}, #], 3 + (# - 1)/2, 3] &@ Mod[n, 8]; a[n_] := If[n <= 4, 0, (1 + f@ n)/2 - r[n] g[n]/12]; Table[Print["a(", n, ") = ", an = a[n]]; an, {n, 102}] (* Michael De Vlieger, Oct 28 2016, after Michael Somos at A001617 and Jean-François Alcover at A000003 *)
    ClassList[n_?Negative] :=
    Select[Flatten[#, 1] &@Table[
        {i, j, (j^2 - n)/(4 i)}, {i, Sqrt[-n/3]}, {j, 1 - i, i}],
      Mod[#3, 1] == 0 && #3 >= # &&
          GCD[##] == 1 && ! (# == #3 && #2 < 0) & @@ # &]
    A001617[n_] := If[n < 1, 0,
      1 + Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d,
         Divisors@n}] -
       Count[(#^2 - # + 1)/n & /@ Range[n], _?IntegerQ]/3 -
       Count[(#^2 + 1)/n & /@ Range[n], _?IntegerQ]/4];
    a[n_] := If[0 <= n <= 4, 0, (A001617[n] + 1)/2 - If[Mod[n, 8] == 3, 4, If[Mod[n, 8] == 7, 6, 3]] Length[ClassList[-4 n]]/12] (* David Jao, Sep 07 2020 *)
  • PARI
    A000003(n) = qfbclassno(-4*n);
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k, 1]+1)),
         h = prod(k=1, fsz, f[k, 1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
    };
    A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    a(n) = {
      my(r = if (n%8 == 3, 4, n%8 == 7, 6, 3));
      if (n < 5, 0, (1 + A001617(n))/2 - r * A000003(n)/12);
    };
    vector(102, n, a(n))

Formula

a(n) = (1 + A001617(n))/2 - r * A000003(n)/12 for all n > 4, where r=4 for n=3 (mod 8), r=6 for n=7 (mod 8) and r=3 otherwise.
a(n) <> 4884 for all n.

Extensions

New name from David Jao, Sep 07 2020

A054729 Numbers n such that genus of modular curve X_0(N) is never equal to n.

Original entry on oeis.org

150, 180, 210, 286, 304, 312, 336, 338, 348, 350, 480, 536, 570, 598, 606, 620, 666, 678, 706, 730, 756, 780, 798, 850, 876, 896, 906, 916, 970, 1014, 1026, 1046, 1106, 1144, 1170, 1176, 1186, 1188, 1224, 1244, 1260, 1320, 1350, 1356, 1366
Offset: 1

Views

Author

Janos A. Csirik, Apr 21 2000

Keywords

Comments

"Looking further in the list of integers not of the form g0(N), we do eventually find some odd values, the first one occurring at the 3885th position. There are four such up to 10^5 (out of 9035 total missed values), namely 49267, 74135, 94091, 96463." (see Csirik link) - Gheorghe Coserea, May 21 2016.
a(1534734) = 9999996. - Gheorghe Coserea, May 23 2016

Crossrefs

Programs

  • Mathematica
    a1617[n_] := a1617[n] = If[n < 1, 0, 1 + Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d, Divisors[n]}] - Count[(#^2 - # + 1)/n & /@ Range[n], ?IntegerQ]/3 - Count[(#^2+1)/n & /@ Range[n], ?IntegerQ]/4];
    seq[n_] := Module[{inv, bnd}, inv[_] = -1; bnd = 12 n + 18 Floor[Sqrt[n]] + 100; For[k = 1, k <= bnd, k++, g = a1617[k]; If[g <= n && inv[g+1] == -1, inv[g+1] = k]]; (Position[Array[inv, n+1], -1] // Flatten)-1];
    seq[1000] (* Jean-François Alcover, Nov 20 2018, after Gheorghe Coserea and Michael Somos in A001617 *)
  • PARI
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k,1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k,1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k,1]+1)),
         h = prod(k=1, fsz, f[k,1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k,1]^(f[k,2]\2) + f[k,1]^((f[k,2]-1)\2));
    };
    A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    scan(n) = {
      my(inv = vector(n+1,g,-1), bnd = 12*n + 18*sqrtint(n) + 100, g);
      for (k = 1, bnd, g = A001617(k);
           if (g <= n && inv[g+1] == -1, inv[g+1] = k));
      apply(x->(x-1), Vec(select(x->x==-1, inv, 1)))
    };
    scan(1367)  \\ Gheorghe Coserea, May 21 2016

A061884 a(n) = Sum_{ d | n } phi(lcm(d,n/d)), where phi(n) = Euler totient A000010.

Original entry on oeis.org

1, 2, 4, 5, 8, 8, 12, 12, 14, 16, 20, 20, 24, 24, 32, 26, 32, 28, 36, 40, 48, 40, 44, 48, 44, 48, 48, 60, 56, 64, 60, 56, 80, 64, 96, 70, 72, 72, 96, 96, 80, 96, 84, 100, 112, 88, 92, 104, 90, 88, 128, 120, 104, 96, 160, 144, 144, 112, 116, 160, 120, 120, 168, 116, 192
Offset: 1

Views

Author

Vladeta Jovovic, May 12 2001

Keywords

Crossrefs

Programs

  • Maple
    A061884 := proc(n) local b,d: b := 0; for d from 1 to n do if irem(n,d)=0 then b := b+phi(lcm(d,n/d)); fi; od; RETURN(b); end:
  • Mathematica
    Table[Plus @@ Map[ EulerPhi[LCM[ #, n/# ]] &, Select[ Range@n, (Mod[n, # ] == 0) &]], {n, 65}] (* Robert G. Wilson v, Sep 30 2006 *)
  • PARI
    a(n)=sumdiv(n,d,eulerphi(lcm(d,n/d))) \\ Charles R Greathouse IV, Feb 21 2013

A091403 Numbers n such that genus of group Gamma_0(n) is 1.

Original entry on oeis.org

11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49
Offset: 1

Views

Author

N. J. A. Sloane, Mar 02 2004

Keywords

Comments

I assume it is known that there are no further terms? A reference for this would be nice.
Available conductors for modular elliptic curves genus 1. [From Artur Jasinski, Jun 24 2010]

References

  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 103.
  • G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see Prop. 1.40 and 1.43.

Crossrefs

Programs

  • Mathematica
    a89[n_] := a89[n] = Product[{p, e} = pe; Which[p < 3 && e == 1, 1, p == 2 && e > 1, 0, Mod[p, 4] == 1, 2, Mod[p, 4] == 3, 0, True, a89[p^e]], {pe, FactorInteger[n]}];
    a86[n_] := a86[n] = Product[{p, e} = pe; Which[p == 1 || p == 3 && e == 1, 1, p == 3 && e > 1, 0, Mod[p, 3] == 1, 2, Mod[p, 3] == 2, 0, True, a86[p^e]], {pe, FactorInteger[n]}];
    a1615[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}];
    a1616[n_] := Sum[EulerPhi[GCD[ d, n/d]], {d, Divisors[n]}];
    a1617[n_] := 1 + a1615[n]/12 - a89[n]/4 - a86[n]/3 - a1616[n]/2;
    Position[Array[a1617, 100], 1] // Flatten (* Jean-François Alcover, Oct 18 2018 *)

Formula

Numbers n such that A001617(n) = 1.

A159634 Coefficient for dimensions of spaces of modular & cusp forms of weight k/2, level 4*n and trivial character, where k>=5 is odd.

Original entry on oeis.org

1, 2, 4, 4, 6, 8, 8, 8, 12, 12, 12, 16, 14, 16, 24, 16, 18, 24, 20, 24, 32, 24, 24, 32, 30, 28, 36, 32, 30, 48, 32, 32, 48, 36, 48, 48, 38, 40, 56, 48, 42, 64, 44, 48, 72, 48, 48, 64, 56, 60, 72, 56, 54, 72, 72, 64, 80, 60, 60, 96, 62, 64, 96, 64, 84, 96, 68, 72, 96, 96
Offset: 1

Views

Author

Steven Finch, Apr 17 2009

Keywords

Comments

Denote dim{M_k(Gamma_0(N))} by m(k,N) and dim{S_k(Gamma_0(N))} by s(k,N).
We have
m(7/2,N)+s(5/2,N) = m(5/2,N)+s(7/2,N) =
(m(11/2,N)+s(9/2,N))/2 = (m(9/2,N)+s(11/2,N))/2 =
(m(15/2,N)+s(13/2,N))/3 = (m(13/2,N)+s(15/2,N))/3 = ...
(m((4j+3)/2,N)+s((4j+1)/2,N))/j = (m((4j+1)/2,N)+s((4j+3)/2,N))/j = ...
where N is any positive multiple of 4 and j>=1.
Multiplicative because A001615 is multiplicative and a(1) = A001615(2)/3 = 1. - Andrew Howroyd, Aug 08 2018

References

  • Ken Ono, The Web of Modularity: Arithmetic of Coefficients of Modular Forms and q-series. American Mathematical Society, 2004, (p. 16, theorem 1.56).

Crossrefs

Programs

  • Magma
    [[4*n,(Dimension(HalfIntegralWeightForms(4*n,7/2))+ Dimension(CuspidalSubspace(HalfIntegralWeightForms(4*n,5/2))))/2] : n in [1..70]]; [[4*n,(Dimension(HalfIntegralWeightForms(4*n,5/2))+ Dimension(CuspidalSubspace(HalfIntegralWeightForms(4*n,7/2))))/2] : n in [1..70]];
    
  • Mathematica
    (* per Enrique Pérez Herrero's conjecture proved by P. Humphries, see link *)
    dedekindPsi[n_Integer]:=n Apply[Times,1+1/Map[First,FactorInteger[n]]];
    1/3 dedekindPsi /@ (2 Range[70]) (* Wouter Meeussen, Apr 06 2014 *)
  • PARI
    a(n) = 2*n*sumdiv( 2*n, d, moebius(d)^2 / d)/3; \\ Andrew Howroyd, Aug 08 2018

Formula

a(n) = A159636(n) + A159630(n). - Enrique Pérez Herrero, Apr 15 2014
a(n) = A001615(2*n)/3. - Enrique Pérez Herrero, Jan 31 2014
From Peter Bala, Mar 19 2019: (Start)
a(n)= n*Product_{p|n, p odd prime} (1 + 1/p).
a(n) = Sum_{d|n, d odd} mu(d)^2*n/d, where mu(n) = A008683(n) is the Möbius function.
If n = m*2^k , where 2^k is the largest power of 2 dividing n, then
a(n) = (2^k)*a(m) = 2^k * Sum_{d^2|m} mu(d)*sigma(m/d^2), where sigma(n) = A000203(n) is the sum of the divisors of n, and also
a(n) = 2^k * Sum_{d|m} 2^omega(d)*phi(m/d), where omega(n) = A001221(n) is the number of different primes dividing n and phi(n) = A000010 is the Euler totient function.
O.g.f.: Sum_{n >= 1} mu(2*n-1)^2*x^(2^n-1)/(1 - x^(2*n-1))^2. (End)
a(n) = A000082(n)/A080512(n). [obvious by prime products, discovered by Sequence Machine]. - R. J. Mathar, Jun 24 2021
From Amiram Eldar, Nov 17 2022: (Start)
Multiplicative with a(2^e) = 2^e, and a(p^e) = (p+1)*p^(e-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 6/Pi^2 = 0.607927... (A059956). (End)

A159636 Dimension of space of cusp forms of weight 5/2, level 4*n and trivial character.

Original entry on oeis.org

0, 0, 1, 0, 3, 3, 4, 2, 6, 6, 7, 6, 9, 9, 14, 6, 12, 12, 13, 12, 20, 15, 16, 16, 18, 18, 21, 18, 21, 30, 22, 16, 32, 24, 32, 24, 27, 27, 38, 28, 30, 42, 31, 30, 48, 33, 34, 36, 36, 36, 50, 36, 39, 45, 50, 40, 56, 42, 43, 60
Offset: 1

Views

Author

Steven Finch, Apr 17 2009

Keywords

Crossrefs

Programs

  • Magma
    [[4*n,Dimension(CuspidalSubspace(HalfIntegralWeightForms(4*n,5/2)))] : n in [1..75]];
  • Mathematica
    dedekindPsi[n_Integer] := n*Times @@ (1 + 1/First /@ FactorInteger[n]);
    \[Chi][n_Integer] := Sum[EulerPhi[GCD[d, n/d]], {d, Divisors[n]}];
    r[(p_)?PrimeQ, n_Integer] := -1+ Last[Flatten[Cases[FactorInteger[p*n], {p, _}]]];
    \[Alpha][n_Integer] := Block[{rn}, rn = r[2, n]; If[EvenQ[rn], 3*2^(rn/2 - 1), 2^(rn/2 + 1/2)]];
    \[Beta][n_Integer] := Block[{rn}, rn = r[2, n]; Which[rn >= 4, \[Alpha][n], rn === 3, 3, rn === 2 && Or @@ OddQ[(r[#1, n] & ) /@ Select[First /@ FactorInteger[n], Mod[#1, 4] === 3 & ]], 2, True, 3/2]];
    s[5/2, n_Integer] := (1/8)* dedekindPsi[n] - \[Beta][n]*(\[Chi][n]/2/\[Alpha][n]);
    s[5/2, #] & /@ Range[4, 240, 4] (* Wouter Meeussen, cf. Finch reference, Mar 31 2014 *)
Showing 1-10 of 26 results. Next