A273445 a(n) is the number of solutions of the equation n = A001617(k).
15, 12, 8, 11, 7, 14, 4, 13, 7, 12, 4, 15, 4, 9, 6, 10, 5, 16, 2, 20, 3, 14, 7, 11, 2, 13, 5, 11, 3, 14, 3, 9, 6, 13, 3, 17, 3, 14, 4, 10, 4, 20, 3, 15, 3, 12, 1, 15, 2, 20, 4, 11, 3, 13, 3, 16, 3, 12, 3, 15, 3, 12, 5, 9, 4, 15, 2, 14, 5, 17, 3, 13
Offset: 0
Keywords
Examples
For n = 0 the a(0) = 15 solutions are: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25 (A091401). For n = 1 the a(1) = 12 solutions are: 11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49 (A091403). For n = 2 the a(2) = 8 solutions are: 22, 23, 26, 28, 29, 31, 37, 50 (A091404).
Links
- Gheorghe Coserea, Table of n, a(n) for n = 0..100001
- J. A. Csirik, M. Zieve, and J. Wetherell, On the genera of X0(N), arXiv:math/0006096 [math.NT], 2000.
Programs
-
Mathematica
(* b = A001617 *) nmax = 71; b[n_] := b[n] = If[n < 1, 0, 1 + Sum[ MoebiusMu[ d]^2 n/d / 12 - EulerPhi[ GCD[ d, n/d]] / 2, {d, Divisors[n]}] - Count[(#^2 - # + 1)/n& /@ Range[n], ?IntegerQ]/3 -Count[(#^2 + 1)/n& /@ Range[n], ?IntegerQ]/4]; Clear[f]; f[m_] := f[m] = Module[{}, A001617 = Array[b, m]; a[n_] := Count[A001617, n]; Table[a[n], {n, 0, nmax}]]; f[m = nmax]; f[m = m + nmax]; While[Print["m = ", m]; f[m] != f[m - nmax], m = m + nmax]; A273445 = f[m] (* Jean-François Alcover, Dec 16 2018, using Michael Somos' code for A001617 *)
-
PARI
A000089(n) = { if (n%4 == 0 || n%4 == 3, return(0)); if (n%2 == 0, n \= 2); my(f = factor(n), fsz = matsize(f)[1]); prod(k = 1, fsz, if (f[k,1] % 4 == 3, 0, 2)); }; A000086(n) = { if (n%9 == 0 || n%3 == 2, return(0)); if (n%3 == 0, n \= 3); my(f = factor(n), fsz = matsize(f)[1]); prod(k = 1, fsz, if (f[k,1] % 3 == 2, 0, 2)); }; A001615(n) = { my(f = factor(n), fsz = matsize(f)[1], g = prod(k=1, fsz, (f[k,1]+1)), h = prod(k=1, fsz, f[k,1])); return((n*g)\h); }; A001616(n) = { my(f = factor(n), fsz = matsize(f)[1]); prod(k = 1, fsz, f[k,1]^(f[k,2]\2) + f[k,1]^((f[k,2]-1)\2)); }; A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2; seq(n) = { my(a = vector(n+1,g,0), bnd = 12*n + 18*sqrtint(n) + 100, g); for (k = 1, bnd, g = A001617(k); if (g <= n, a[g+1]++)); return(a); }; seq(72)
Formula
a(n) = card {k, n = A001617(k)}.
Comments