cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A060564 Number of elliptic curves (up to isogeny) of conductor n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 2, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 2, 1, 2, 3, 2, 0, 0, 1, 1, 1, 1, 1, 3, 1, 0, 1, 1, 0, 1, 1, 0, 3, 1, 3, 1, 1, 2, 0, 1, 1, 2, 1, 0, 0, 1, 2, 3, 2, 2, 0, 1, 0, 2, 0, 1, 4
Offset: 1

Views

Author

N. J. A. Sloane, Apr 12 2001

Keywords

Comments

By the modularity of elliptic curves over Q (proved by Breuil-Conrad-Diamond-Taylor), a(n) is equivalently the number of integral normalized weight 2 newforms for Gamma_0(n). - Robin Visser, Nov 04 2024

Examples

			a(11) = 1, as there is exactly one isogeny class of elliptic curves over Q of conductor 11, represented by E : y^2 + y = x^3 - x^2. - _Robin Visser_, Nov 04 2024
		

Crossrefs

Programs

  • Sage
    # Uses Cremona's database of elliptic curves (works for all n < 500000)
    def a(n):
        return CremonaDatabase().number_of_isogeny_classes(n)  # Robin Visser, Nov 04 2024

A159046 Dimension of the space of newforms of weight 2 on the subgroup Gamma_1(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 1, 2, 5, 2, 7, 3, 5, 4, 12, 5, 12, 6, 13, 8, 22, 7, 26, 13, 19, 11, 25, 13, 40, 14, 29, 19, 51, 13, 57, 25, 39, 21, 70, 23, 69, 24, 55, 37, 92, 22, 79, 42, 71, 34, 117, 34, 126, 39, 87, 61, 117, 31, 155, 68, 109, 45, 176, 55, 187, 56, 119, 87
Offset: 1

Views

Author

Steven Finch, Apr 03 2009

Keywords

Examples

			a(p) = A029937(p) = (p-5)*(p-7)/24 for any prime p>3.
G.f. = x^11 + 2*x^13 + x^14 + x^15 + 2*x^16 + 5*x^17 + 2*x^18 + 7*x^19 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ DivisorSum[ n/j, MoebiusMu[#] MoebiusMu[n/j/#] &] If[ j < 5, 0, 1 + DivisorSum[ j, #^2 MoebiusMu[ j/#] / 24 - EulerPhi [#] EulerPhi[j/#] / 4 &]], {j, Divisors@n}]]; (* Michael Somos, May 10 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, j, sumdiv(n/j, k, moebius(k) * moebius(n/j/k)) * if( j<5, 0, 1 + sumdiv(j, k, k^2 * moebius(j/k) / 24 - eulerphi(k) * eulerphi(j/k) / 4))))}; /* Michael Somos, May 10 2015 */

Formula

a(n) = A029937(n) - sum a(m)*d(n/m), where the summation is over all divisors 1 < m < n of n and d is the divisor function.
Dirichlet convolution of A007247 and A029937. - Michael Somos, May 10 2015

A260088 Dimension of the space of newforms of weight 4 and level n.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 3, 2, 2, 1, 4, 1, 4, 1, 4, 3, 5, 1, 3, 3, 4, 2, 7, 2, 7, 3, 6, 4, 6, 1, 9, 5, 6, 3, 10, 2, 10, 3, 5, 6, 11, 3, 8, 5, 8, 3, 13, 4, 10, 4, 10, 7, 14, 2, 15, 8, 7, 5, 12, 4, 16, 4, 12, 6, 17, 4, 18, 9, 10, 5, 16, 6, 19, 6
Offset: 1

Views

Author

R. J. Mathar, Jul 15 2015

Keywords

Crossrefs

Programs

  • Maple
    seq(g0star(4,N),N=1..80); # using functions coded in A063195
Showing 1-3 of 3 results.