cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A127788 Dimension of the space of newforms of weight 2 and level n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 2, 1, 1, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 1, 1, 1, 4, 1, 1, 2, 3, 1, 4, 2, 3, 2, 3, 2, 5, 0, 4, 3, 3, 1, 5, 3, 5, 2, 3, 1, 6, 1, 5, 4, 3, 1, 5, 1, 6, 2, 2, 3, 7, 2, 5, 4, 5, 3, 7, 3, 7, 2, 5, 3, 7, 2, 7, 3, 4, 1, 8, 3
Offset: 1

Views

Author

Steven Finch, Apr 04 2007

Keywords

Comments

"Newform" is meant in the sense of Atkin-Lehner, that is, a primitive Hecke eigenform relative to the subgroup Gamma_0(n).

Examples

			a(p) = A001617(p) for any prime p.
G.f. = x^11 + x^14 + x^15 + x^17 + x^19 + x^20 + x^21 + 2*x^23 + x^24 + ...
		

References

  • H. Cohen, Number Theory. Vol. II. Analytic and Modern Tools. Springer, 2007, pp. 496-497.
  • Toshitsune Miyake, Modular Forms, Springer-Verlag, 1989. See Table A.

Crossrefs

Programs

  • Maple
    seq( g0star(2,N),N=1..80); # using the source in A063195 - R. J. Mathar, Jul 15 2015
  • Mathematica
    A001617[n_] := If[n < 1, 0, 1 + Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d, Divisors@n}] - Count[(#^2 - # + 1)/n & /@ Range[n], ?IntegerQ]/3 - Count[(#^2 + 1)/n & /@ Range[n], ?IntegerQ]/4]; a[n_ /; n < 10] = 0; a[n_] := a[n] =  A001617[n] - Sum[a[m]*DivisorSigma[0, n/m], {m, Divisors[n][[2 ;; -2]]}]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, Sep 07 2015, A001617 code due to Michael Somos *)
  • PARI
    {a(n) = my(v = [1, 3, 4, 6], A, p, e); if( n<1, 0, A = factor(n); for( k=1, matsize(A)[1], [p, e] = A[k,]; v[1] *= if( e==1, p-1, e==2, p^2-p-1, p^(e-3) * (p+1) * (p-1)^2); v[2] *= if( p==2, (e==3) - (e<3), e==1, kronecker(-4, p) - 1, e==2, -kronecker(-4, p)); v[3] *= if( p==3, (e==3) - (e<3), e==1, kronecker(-3, p) - 1, e==2, -kronecker(-3, p)); v[4] *= if( e%2, 0, e==2, p-2, p^(e/2-2) * (p-1)^2)); moebius(n) + (v[1] - v[2] - v[3] - v[4]) / 12 )}; /* Michael Somos, Jun 06 2015 */

Formula

a(n) = A001617(n) - sum a(m)*d(n/m), where the summation is over all divisors 1 < m < n of n and d is the divisor function.

A116569 a(n) = (x^3 - x) / 6, where x is the genus of the modular curve X_0(p) for p = prime(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 4, 4, 10, 10, 20, 10, 20, 35, 20, 35, 56, 56, 56, 84, 84, 120, 84, 120, 165, 220, 220, 220, 286, 286, 286, 364, 455, 455, 560, 455, 680, 560, 680, 680, 816, 969, 1140, 969
Offset: 1

Views

Author

Roger L. Bagula, Mar 18 2006

Keywords

Comments

From Mia Boudreau, Jul 29 2025: (Start)
Previously named "Ono prime weight function divided by 6.".
See A001617 and A116563 for definition of genus of modular curve for X_0(n). (End)

Examples

			a(415) = 2218636 = (A116563(415)^3 - A116563(415)) / 6.
		

Crossrefs

Programs

  • Java
    long a(int n){
     long p = prime(n);
     long k = (p - switch((int)(p % 12)){
      case 1 -> 13; case 2 -> 5; case 3 -> 7; default -> -1;}) / 12;
     return k * (k - 1) * (k + 1) / 6;} // Mia Boudreau, Jul 29 2025
  • Mathematica
    g[1] = 1; g[2] = 1;
    g[n_] := (Prime[n] - 13)/12 /; Mod[Prime[n], 12] - 1 == 0;
    g[n_] := (Prime[n] - 5)/12 /; Mod[Prime[n], 12] - 5 == 0;
    g[n_] := (Prime[n] - 7)/12 /; Mod[Prime[n], 12] - 7 == 0;
    g[n_] := (Prime[n] + 1)/12 /; Mod[Prime[n], 12] - 11 == 0;
    Table[g[n]*(g[n]^2 - 1)/6, {n, 1, 50}]
  • PARI
    a(n) = {if (n < 3, g = 1, p = prime(n); m = p % 12; g = if (m==1, (p-13)/12, if (m==5, (p-5)/12, if (m==7, (p-7)/12, if (m==11, (p+1)/12))))); g*(g^2-1)/6;} \\ Michel Marcus, Apr 06 2018
    

Formula

a(n) = (A116563(n)^3 - A116563(n)) / 6. - Mia Boudreau, Jul 29 2025

Extensions

Offset corrected by Michel Marcus, Apr 06 2018
Showing 1-2 of 2 results.