A054728 a(n) is the smallest level N such that genus of modular curve X_0(N) is n (or -1 if no such curve exists).
1, 11, 22, 30, 38, 42, 58, 60, 74, 66, 86, 78, 106, 105, 118, 102, 134, 114, 223, 132, 166, 138, 188, 156, 202, 168, 214, 174, 236, 186, 359, 204, 262, 230, 278, 222, 298, 240, 314, 246, 326, 210, 346, 270, 358, 282, 557, 306, 394, 312, 412, 318
Offset: 0
Keywords
References
- J. A. Csirik, The genus of X_0(N) is not 150, preprint, 2000.
Links
- Gheorghe Coserea, Table of n, a(n) for n = 0..200010
- János A. Csirik, Joseph L. Wetherell, Michael E. Zieve, On the genera of X_0(N), arXiv:math/0006096 [math.NT], 2000.
Programs
-
Mathematica
a1617[n_] := If[n<1, 0, 1+Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d, Divisors[n]}] - Count[(#^2 - # + 1)/n& /@ Range[n], ?IntegerQ]/3 - Count[(#^2+1)/n& /@ Range[n], ?IntegerQ]/4]; seq[n_] := Module[{inv, bnd}, inv = Table[-1, {n+1}]; bnd = 12n + 18 Floor[Sqrt[n]] + 100; For[k = 1, k <= bnd, k++, g = a1617[k]; If[g <= n && inv[[g+1]] == -1, inv[[g+1]] = k]]; inv]; seq[51] (* Jean-François Alcover, Nov 20 2018, after Gheorghe Coserea and Michael Somos in A001617 *)
-
PARI
A000089(n) = { if (n%4 == 0 || n%4 == 3, return(0)); if (n%2 == 0, n \= 2); my(f = factor(n), fsz = matsize(f)[1]); prod(k = 1, fsz, if (f[k,1] % 4 == 3, 0, 2)); }; A000086(n) = { if (n%9 == 0 || n%3 == 2, return(0)); if (n%3 == 0, n \= 3); my(f = factor(n), fsz = matsize(f)[1]); prod(k = 1, fsz, if (f[k,1] % 3 == 2, 0, 2)); }; A001615(n) = { my(f = factor(n), fsz = matsize(f)[1], g = prod(k=1, fsz, (f[k,1]+1)), h = prod(k=1, fsz, f[k,1])); return((n*g)\h); }; A001616(n) = { my(f = factor(n), fsz = matsize(f)[1]); prod(k = 1, fsz, f[k,1]^(f[k,2]\2) + f[k,1]^((f[k,2]-1)\2)); }; A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2; seq(n) = { my(inv = vector(n+1,g,-1), bnd = 12*n + 18*sqrtint(n) + 100, g); for (k = 1, bnd, g = A001617(k); if (g <= n && inv[g+1] == -1, inv[g+1] = k)); return(inv); }; seq(51) \\ Gheorghe Coserea, May 21 2016
Formula
A001617(a(A001617(n))) = A001617(n) and a(A054729(n)) = -1 for all n>=1. - Gheorghe Coserea, May 22 2016
Comments