cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A124315 a(n) = Sum_{ d divides n } tau(gcd(d,n/d)), where tau = sigma_0 = A000005.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 6, 4, 4, 2, 8, 2, 4, 4, 9, 2, 8, 2, 8, 4, 4, 2, 12, 4, 4, 6, 8, 2, 8, 2, 12, 4, 4, 4, 16, 2, 4, 4, 12, 2, 8, 2, 8, 8, 4, 2, 18, 4, 8, 4, 8, 2, 12, 4, 12, 4, 4, 2, 16, 2, 4, 8, 16, 4, 8, 2, 8, 4, 8, 2, 24, 2, 4, 8, 8, 4, 8, 2, 18, 9, 4, 2, 16, 4, 4, 4, 12, 2, 16, 4, 8, 4, 4, 4, 24, 2, 8
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2006

Keywords

Comments

Apparently the Mobius transform of A046951. - R. J. Mathar, Feb 07 2011
Number of ordered pairs of divisors of n, (d1,d2), with d1<=d2, such that d1|d2 and n|(d1*d2). - Wesley Ivan Hurt, Mar 22 2022

Crossrefs

Programs

  • Maple
    A124315 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do igcd(d,n/d) ; a := a+numtheory[tau](%) ; end do: a; end proc: # R. J. Mathar, Apr 14 2011
  • Mathematica
    Table[Plus @@ Map[DivisorSigma[0, GCD[ #, n/# ]] &, Divisors@n], {n, 98}]
    f[p_, e_] := e + 1 + Floor[e^2/4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 10 2022 *)
  • PARI
    a(n) = sumdiv(n, d, numdiv(gcd(d, n/d))); \\ Michel Marcus, Feb 12 2016
    
  • Python
    from sympy import divisors, divisor_count, gcd
    def a(n): return sum([divisor_count(gcd(d, n/d)) for d in divisors(n)]) # Indranil Ghosh, May 25 2017

Formula

a(p) = 2 iff p is a prime.
Multiplicative with a(p^e) = e+1+floor(e^2/4). - R. J. Mathar, Apr 14 2011
Dirichlet g.f.: zeta(s)^2 * zeta(2*s). - Vaclav Kotesovec, Jan 11 2019
Sum_{k=1..n} a(k) ~ (Pi^2/6) * (n*log(n) + (2*gamma - 1 + 2*zeta'(2)/zeta(2))*n), where gamma is Euler's constant (A001620). - Amiram Eldar, Oct 22 2022

A332713 a(n) = Sum_{d|n} phi(d/gcd(d, n/d)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 7, 8, 10, 11, 12, 13, 14, 15, 13, 17, 16, 19, 20, 21, 22, 23, 21, 22, 26, 22, 28, 29, 30, 31, 24, 33, 34, 35, 32, 37, 38, 39, 35, 41, 42, 43, 44, 40, 46, 47, 39, 44, 44, 51, 52, 53, 44, 55, 49, 57, 58, 59, 60, 61, 62, 56, 46, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 20 2020

Keywords

Crossrefs

Cf. A000010, A001616, A010052, A046790 (numbers n such that a(n) < n), A055653, A061884, A078779 (fixed points), A332619, A332686, A332712.

Programs

  • Mathematica
    Table[Sum[EulerPhi[d/GCD[d, n/d]], {d, Divisors[n]}], {n, 1, 70}]
    A055653[n_] := Sum[Boole[GCD[d, n/d] == 1] EulerPhi[d], {d, Divisors[n]}]; a[n_] := Sum[Boole[IntegerQ[(n/d)^(1/2)]] A055653[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 70}]
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d/gcd(d, n/d))); \\ Michel Marcus, Feb 20 2020

Formula

Dirichlet g.f.: zeta(s) * zeta(2*s) * zeta(s - 1) * Product_{p prime} (1 - p^(-s) + p^(-2*s) - p^(1 - 2*s)).
a(n) = Sum_{d|n} phi(lcm(d, n/d)/d).
a(n) = Sum_{d|n} A010052(n/d) * A055653(d).
Sum_{k=1..n} a(k) ~ c * Pi^6 * n^2 / 1080, where c = A330523 = Product_{primes p} (1 - 1/p^2 - 1/p^3 + 1/p^4) = 0.5358961538283379998085... - Vaclav Kotesovec, Feb 22 2020
From Richard L. Ollerton, May 10 2021: (Start)
a(n) = Sum_{k=1..n} phi(gcd(n,k)/gcd(gcd(n,k),n/gcd(n,k)))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} phi(n/gcd(n,k)/gcd(gcd(n,k),n/gcd(n,k)))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} phi(lcm(gcd(n,k),n/gcd(n,k))/gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} phi(lcm(gcd(n,k),n/gcd(n,k))*gcd(n,k)/n)/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} A010052(gcd(n,k))*A055653(n/gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} A010052(n/gcd(n,k))*A055653(gcd(n,k))/phi(n/gcd(n,k)). (End)

A124316 a(n) = Sum_{d|n} sigma(gcd(d,n/d)), where sigma is the sum of divisors function, A000203.

Original entry on oeis.org

1, 2, 2, 5, 2, 4, 2, 8, 6, 4, 2, 10, 2, 4, 4, 15, 2, 12, 2, 10, 4, 4, 2, 16, 8, 4, 10, 10, 2, 8, 2, 22, 4, 4, 4, 30, 2, 4, 4, 16, 2, 8, 2, 10, 12, 4, 2, 30, 10, 16, 4, 10, 2, 20, 4, 16, 4, 4, 2, 20, 2, 4, 12, 37, 4, 8, 2, 10, 4, 8, 2, 48, 2, 4, 16, 10, 4, 8, 2, 30, 23, 4, 2, 20, 4, 4, 4, 16, 2, 24
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2006

Keywords

Comments

Apparently multiplicative and the inverse Mobius transform of A069290. - R. J. Mathar, Feb 07 2011

Crossrefs

Programs

  • Maple
    A124316 := proc(n) local a,d;
      a := 0 ;
      for d in numtheory[divisors](n) do
         igcd(d,n/d) ;
         a := a+numtheory[sigma](%) ;
       end do:
       a;
    end proc: # R. J. Mathar, Apr 14 2011
  • Mathematica
    Table[Plus @@ Map[DivisorSigma[1, GCD[ #, n/# ]] &, Divisors@n], {n, 90}]
    f[p_, e_] := (If[OddQ[e], 2*p^((e+3)/2), p^(e/2 + 1)*(p+1)] - (e+3)*p + e + 1)/(p-1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Mar 28 2024 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(gcd(d, n/d))); \\ Michel Marcus, Feb 13 2016
    
  • Python
    from sympy import divisors, divisor_sigma, gcd
    def a(n): return sum([divisor_sigma(gcd(d, n/d)) for d in divisors(n)]) # Indranil Ghosh, May 25 2017

Formula

From Amiram Eldar, Mar 28 2024: (Start)
Multiplicative with a(p^e) = (p^(e/2 + 1)*(p+1) - (e+3)*p + e + 1)/(p-1)^2, if e is even, and (2*p^((e+3)/2) - (e+3)*p + e + 1)/(p-1)^2 if e is odd.
Dirichlet g.f.: zeta(s)^2 * zeta(2*s-1).
Sum_{k=1..n} a(k) = (log(n)^2/4 + (2*gamma - 1/2)*log(n) + 5*gamma^2/2 - 2*gamma - 3*gamma_1 + 1/2) * n + O(n^(2/3)*log(n)^(16/9)), where gamma is Euler's constant (A001620) and gamma_1 is the first Stieltjes constant (A082633) (Krätzel et al., 2012). (End)

A374352 a(n) = [n>1] * a(n-1) + Sum_{d|n} phi(lcm(d,n/d)) where [] is an Iverson bracket.

Original entry on oeis.org

1, 3, 7, 12, 20, 28, 40, 52, 66, 82, 102, 122, 146, 170, 202, 228, 260, 288, 324, 364, 412, 452, 496, 544, 588, 636, 684, 744, 800, 864, 924, 980, 1060, 1124, 1220, 1290, 1362, 1434, 1530, 1626, 1706, 1802, 1886, 1986, 2098, 2186, 2278, 2382, 2472, 2560, 2688
Offset: 1

Views

Author

Alois P. Heinz, Jul 05 2024

Keywords

Comments

Sum over all positive integers k, m with k*m <= n of phi(lcm(k,m)).

Crossrefs

Partial sums of A061884.

Programs

  • Maple
    a:= proc(n) option remember; uses numtheory; `if`(n<1, 0,
          a(n-1)+add(phi(ilcm(d, n/d)), d=divisors(n)))
        end:
    seq(a(n), n=1..66);

Formula

a(n) = Sum_{j=1..n} Sum_{d|j} phi(lcm(d,j/d)).
a(n) = Sum_{j=1..n} A061884(j).
Showing 1-4 of 4 results.