cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A049419 a(1) = 1; for n > 1, a(n) = number of exponential divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 4, 1, 1
Offset: 1

Views

Author

Keywords

Comments

The exponential divisors of a number x = Product p(i)^r(i) are all numbers of the form Product p(i)^s(i) where s(i) divides r(i) for all i.
Wu gives a complicated Dirichlet g.f.
a(1) = 1 by convention. This is also required for a function to be multiplicative. - N. J. A. Sloane, Mar 03 2009
The inverse Moebius transform seems to be in A124315. The Dirichlet inverse appears to be related to A166234. - R. J. Mathar, Jul 14 2014

Examples

			a(8)=2 because 2 and 2^3 are e-divisors of 8.
The sets of e-divisors start as:
  1:{1}
  2:{2}
  3:{3}
  4:{2, 4}
  5:{5}
  6:{6}
  7:{7}
  8:{2, 8}
  9:{3, 9}
  10:{10}
  11:{11}
  12:{6, 12}
  13:{13}
  14:{14}
  15:{15}
  16:{2, 4, 16}
  17:{17}
  18:{6, 18}
  19:{19}
  20:{10, 20}
  21:{21}
  22:{22}
  23:{23}
  24:{6, 24}
		

Crossrefs

Row lengths of A322791.
Cf. A049599, A061389, A051377 (sum of e-divisors).
Partial sums are in A099593.

Programs

  • GAP
    A049419:=n->Product(List(Collected(Factors(n)), p -> Tau(p[2]))); List([1..10^4], n -> A049419(n)); # Muniru A Asiru, Oct 29 2017
    
  • Haskell
    a049419 = product . map (a000005 . fromIntegral) . a124010_row
    -- Reinhard Zumkeller, Mar 13 2012
    
  • Maple
    A049419 := proc(n)
        local a;
        a := 1 ;
        for pf in ifactors(n)[2] do
            a := a*numtheory[tau](op(2,pf)) ;
        end do:
        a ;
    end proc:
    seq(A049419(n),n=1..20) ; # R. J. Mathar, Jul 14 2014
  • Mathematica
    a[1] = 1; a[p_?PrimeQ] = 1; a[p_?PrimeQ, e_] := DivisorSigma[0, e]; a[n_] := Times @@ (a[#[[1]], #[[2]]] & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, Jan 30 2012, after Vladeta Jovovic *)
  • PARI
    a(n) = vecprod(apply(numdiv, factor(n)[,2])); \\ Amiram Eldar, Mar 27 2023

Formula

Multiplicative with a(p^e) = tau(e). - Vladeta Jovovic, Jul 23 2001
Sum_{k=1..n} a(k) ~ A327837 * n. - Vaclav Kotesovec, Feb 27 2023

Extensions

More terms from Jud McCranie, May 29 2000

A138010 a(n) is the number of positive divisors of n that divide d(n), where d(n) is the number of positive divisors of n, A000005(n); a(n) also equals d(gcd(n, d(n))).

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 6, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 2, 2, 1, 2, 1, 4, 1, 2, 1, 6, 1, 2, 1, 4, 1, 4, 1, 2, 1, 2, 1, 6, 1, 2, 2, 1, 1, 2, 1, 4, 1, 2, 1, 6, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4
Offset: 1

Views

Author

Leroy Quet, Feb 27 2008

Keywords

Examples

			12 has 6 divisors (1,2,3,4,6,12). Those divisors of 12 that divide 6 are 1,2,3,6. Since there are 4 of these, then a(12) = 4.
		

Crossrefs

Programs

  • Magma
    [#Divisors( Gcd(n,#Divisors(n))):n in [1..120]]; // Marius A. Burtea, Aug 03 2019
  • Maple
    with(numtheory): a:=proc(n) local div,c,j: div:=divisors(n): c:=0: for j to tau(n) do if `mod`(tau(n), div[j])=0 then c:=c+1 else end if end do: c end proc: seq(a(n),n=1..90); # Emeric Deutsch, Mar 02 2008
  • Mathematica
    Table[Length[Select[Divisors[n], Mod[Length[Divisors[n]], # ] == 0 &]], {n,1,100}] (* Stefan Steinerberger, Feb 29 2008 *)
    Table[Count[DivisorSigma[0,n]/Divisors[n],?IntegerQ],{n,120}] (* _Harvey P. Dale, May 31 2019 *)
  • PARI
    A138010(n) = sumdiv(n,d,if(!(numdiv(n)%d), 1, 0)); \\ Antti Karttunen, May 25 2017
    
  • Python
    from sympy import divisors, divisor_count
    def a(n): return sum([ 1*(divisor_count(n)%d==0) for d in divisors(n)]) # Indranil Ghosh, May 25 2017
    
  • Scheme
    (define (A138010 n) (A000005 (gcd n (A000005 n)))) ;; Antti Karttunen, May 25 2017
    

Formula

a(n) = A000005(A009191(n)). [From the alternative description.] - Antti Karttunen, May 25 2017

Extensions

More terms from Stefan Steinerberger and Emeric Deutsch, Feb 29 2008
Further extended (to 120 terms) by Antti Karttunen, May 25 2017

A332844 Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(2*s).

Original entry on oeis.org

1, 3, 4, 8, 6, 12, 8, 18, 14, 18, 12, 32, 14, 24, 24, 39, 18, 42, 20, 48, 32, 36, 24, 72, 32, 42, 44, 64, 30, 72, 32, 81, 48, 54, 48, 112, 38, 60, 56, 108, 42, 96, 44, 96, 84, 72, 48, 156, 58, 96, 72, 112, 54, 132, 72, 144, 80, 90, 60, 192, 62, 96, 112, 166, 84
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 26 2020

Keywords

Crossrefs

Cf. A000005, A000010, A000203, A010052, A046951, A076752 (Mobius transf.), A124315, A206369, A344442, A347090 (Dirichlet inverse).

Programs

  • Mathematica
    Table[Sum[Boole[IntegerQ[(n/d)^(1/2)]] DivisorSigma[1, d], {d, Divisors[n]}], {n, 1, 65}]
    nmax = 65; CoefficientList[Series[Sum[DivisorSigma[1, k] (EllipticTheta[3, 0, x^k] - 1)/2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    f[p_, e_] := (2*p^(e + 3) - e*p^2 + e - If[OddQ[e], 3*p^2 - 1, 2*p^2 + 2*p - 2])/(2*(p - 1)*(p^2 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]  (* Amiram Eldar, May 25 2025 *)
  • PARI
    A332844(n) = sumdiv(n,d, issquare(n/d) * sigma(d)); \\ Antti Karttunen, May 23 2021

Formula

G.f.: Sum_{k>=1} sigma(k) * (theta_3(x^k) - 1) / 2.
a(n) = Sum_{d|n} A076752(d).
a(n) = Sum_{d|n} A206369(n/d) * tau(d).
a(n) = Sum_{d|n} A010052(n/d) * sigma(d).
a(n) = Sum_{d|n} A124315(n/d) * phi(d).
a(n) = Sum_{d|n} A046951(n/d) * d.
a(p) = p + 1, where p is prime.
Sum_{k=1..n} a(k) ~ Pi^6 * n^2 / 1080. - Vaclav Kotesovec, Feb 26 2020
Multiplicative with a(p^e) = (2*p^(e+3) - e*p^2 + e - 3*p^2 + 1)/(2*(p-1)*(p^2-1)) if e is odd, and (2*p^(e+3) - e*p^2 + e - 2*p^2 - 2*p + 2)/(2*(p-1)*(p^2-1)) if e is even. - Amiram Eldar, May 25 2025

A124316 a(n) = Sum_{d|n} sigma(gcd(d,n/d)), where sigma is the sum of divisors function, A000203.

Original entry on oeis.org

1, 2, 2, 5, 2, 4, 2, 8, 6, 4, 2, 10, 2, 4, 4, 15, 2, 12, 2, 10, 4, 4, 2, 16, 8, 4, 10, 10, 2, 8, 2, 22, 4, 4, 4, 30, 2, 4, 4, 16, 2, 8, 2, 10, 12, 4, 2, 30, 10, 16, 4, 10, 2, 20, 4, 16, 4, 4, 2, 20, 2, 4, 12, 37, 4, 8, 2, 10, 4, 8, 2, 48, 2, 4, 16, 10, 4, 8, 2, 30, 23, 4, 2, 20, 4, 4, 4, 16, 2, 24
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2006

Keywords

Comments

Apparently multiplicative and the inverse Mobius transform of A069290. - R. J. Mathar, Feb 07 2011

Crossrefs

Programs

  • Maple
    A124316 := proc(n) local a,d;
      a := 0 ;
      for d in numtheory[divisors](n) do
         igcd(d,n/d) ;
         a := a+numtheory[sigma](%) ;
       end do:
       a;
    end proc: # R. J. Mathar, Apr 14 2011
  • Mathematica
    Table[Plus @@ Map[DivisorSigma[1, GCD[ #, n/# ]] &, Divisors@n], {n, 90}]
    f[p_, e_] := (If[OddQ[e], 2*p^((e+3)/2), p^(e/2 + 1)*(p+1)] - (e+3)*p + e + 1)/(p-1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Mar 28 2024 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(gcd(d, n/d))); \\ Michel Marcus, Feb 13 2016
    
  • Python
    from sympy import divisors, divisor_sigma, gcd
    def a(n): return sum([divisor_sigma(gcd(d, n/d)) for d in divisors(n)]) # Indranil Ghosh, May 25 2017

Formula

From Amiram Eldar, Mar 28 2024: (Start)
Multiplicative with a(p^e) = (p^(e/2 + 1)*(p+1) - (e+3)*p + e + 1)/(p-1)^2, if e is even, and (2*p^((e+3)/2) - (e+3)*p + e + 1)/(p-1)^2 if e is odd.
Dirichlet g.f.: zeta(s)^2 * zeta(2*s-1).
Sum_{k=1..n} a(k) = (log(n)^2/4 + (2*gamma - 1/2)*log(n) + 5*gamma^2/2 - 2*gamma - 3*gamma_1 + 1/2) * n + O(n^(2/3)*log(n)^(16/9)), where gamma is Euler's constant (A001620) and gamma_1 is the first Stieltjes constant (A082633) (Krätzel et al., 2012). (End)

A268732 Sum of the numbers of divisors of gcd(x,y) with x*y <= n.

Original entry on oeis.org

1, 3, 5, 9, 11, 15, 17, 23, 27, 31, 33, 41, 43, 47, 51, 60, 62, 70, 72, 80, 84, 88, 90, 102, 106, 110, 116, 124, 126, 134, 136, 148, 152, 156, 160, 176, 178, 182, 186, 198, 200, 208, 210, 218, 226, 230, 232, 250, 254, 262, 266, 274, 276, 288, 292, 304, 308, 312, 314, 330
Offset: 1

Views

Author

Michel Marcus, Feb 12 2016

Keywords

Comments

Partial sums of A124315.

Crossrefs

Programs

  • Mathematica
    Table[Total@ Flatten@ Map[Function[k, DivisorSigma[0, GCD[#, k]] & /@ Select[Range@ n, # k <= n &]], Range@ n], {n, 60}] (* Michael De Vlieger, Feb 12 2016 *)
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, numdiv(gcd(d, k/d))));
    
  • PARI
    a(n) = sum(k=1, sqrtint(n), 2*sum(j=1, sqrtint(n\(k*k)), n\(j*k*k))-sqrtint(n\(k*k))^2); \\ Daniel Suteu, Jan 08 2019
    
  • PARI
    a(n)=sum(k=1,n,sum(j=1,sqrt(n/k),floor(n/k/j^2))); \\ Benoit Cloitre, Oct 02 2022

Formula

a(n) = Sum_{k=1..floor(sqrt(n))} (2*Sum_{j=1..floor(sqrt(n/k^2))} floor(n/(j*k^2)) - floor(sqrt(n/k^2))^2). - Daniel Suteu, Jan 08 2019
a(n) = n*zeta(2)*(log(n) + 2*gamma - 1 + 2*zeta'(2)/zeta(2)) + O(sqrt(n)*log(n)), where gamma is the Euler-Mascheroni constant A001620. - Daniel Suteu, Jan 11 2019
a(n) = Sum_{i=1..n} Sum_{j=1..n} floor(sqrt(n/(i*j))). - Ridouane Oudra, Apr 13 2025

A344442 a(n) = A332844(n) - n.

Original entry on oeis.org

0, 1, 1, 4, 1, 6, 1, 10, 5, 8, 1, 20, 1, 10, 9, 23, 1, 24, 1, 28, 11, 14, 1, 48, 7, 16, 17, 36, 1, 42, 1, 49, 15, 20, 13, 76, 1, 22, 17, 68, 1, 54, 1, 52, 39, 26, 1, 108, 9, 46, 21, 60, 1, 78, 17, 88, 23, 32, 1, 132, 1, 34, 49, 102, 19, 78, 1, 76, 27, 74, 1, 180, 1, 40, 53, 84, 19, 90, 1, 154, 54, 44, 1, 172, 23, 46
Offset: 1

Views

Author

Antti Karttunen, May 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, Boole[IntegerQ[(n/#)^(1/2)]] DivisorSigma[1, #] &] - n, {n, 86}] (* Michael De Vlieger, May 24 2021 *)
  • PARI
    A332844(n) = sumdiv(n,d, issquare(n/d) * sigma(d));
    A344442(n) = (A332844(n) - n);

Formula

a(n) = A332844(n) - n.
a(n) = Sum_{d|n} A000010(n/d) * (A124315(d)-1).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Pi^6/540 - 1 = 0.7803503... . - Amiram Eldar, Dec 04 2024

A332730 a(n) = Sum_{d|n} tau(d/gcd(d, n/d)), where tau = A000005.

Original entry on oeis.org

1, 3, 3, 5, 3, 9, 3, 8, 5, 9, 3, 15, 3, 9, 9, 11, 3, 15, 3, 15, 9, 9, 3, 24, 5, 9, 8, 15, 3, 27, 3, 15, 9, 9, 9, 25, 3, 9, 9, 24, 3, 27, 3, 15, 15, 9, 3, 33, 5, 15, 9, 15, 3, 24, 9, 24, 9, 9, 3, 45, 3, 9, 15, 19, 9, 27, 3, 15, 9, 27, 3, 40, 3, 9, 15
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 21 2020

Keywords

Comments

Inverse Moebius transform of A322483.

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[0, d/GCD[d, n/d]], {d, Divisors[n]}], {n, 1, 75}]
    f[p_, e_] := Floor[(e+3)/2]; A322483[n_] := If[n==1, 1, Times @@ (f @@@ FactorInteger[n])]; Table[Sum[A322483[d], {d, Divisors[n]}], {n, 1, 75}]
    f[p_, e_] := Floor[(e + 1)*(e + 5)/4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 05 2022 *)

Formula

a(n) = Sum_{d|n} A322483(d).
a(n) = Sum_{d|n} tau(n/d) * A295316(d).
Multiplicative with a(p^e) = floor((e+1)*(e+5)/4) = A024206(e+2). - Amiram Eldar, Dec 05 2022
Showing 1-7 of 7 results.