cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A009191 a(n) = gcd(n, d(n)), where d(n) is the number of divisors of n (A000005).

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 4, 3, 2, 1, 6, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 8, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 9, 1, 2, 1, 8, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 8, 1, 2, 1, 12, 1, 2, 3, 1, 1, 2, 1, 2, 1, 2, 1, 12, 1, 2, 3, 2, 1, 2, 1, 10, 1, 2, 1, 12, 1, 2, 1, 8, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 3, 1, 1, 2, 1, 8, 1
Offset: 1

Views

Author

Keywords

Comments

a(A046642(n)) = 1.
First occurrence of k: 1, 2, 9, 8, 400, 12, 3136, 24, 36, 80, 123904, 60, 692224, 448, 2025, 384, .... Conjecture: each k is present. - Robert G. Wilson v, Mar 27 2013
Conjecture is true. See David A. Corneth's comment in A324553. - Antti Karttunen, Mar 06 2019

Crossrefs

Cf. A046642 (positions of ones), A324553 (position of the first occurrence of each n).

Programs

Formula

a(n) = gcd(n, A000005(n)) = gcd(n, A049820(n)). - Antti Karttunen, Sep 25 2018

A138011 a(n) = number of positive divisors, k, of n where d(k) divides d(n). (d(m) = number of positive divisors of m, A000005).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 5, 2, 4, 4, 2, 2, 5, 2, 5, 4, 4, 2, 6, 2, 4, 3, 5, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 6, 2, 8, 2, 5, 5, 4, 2, 5, 2, 5, 4, 5, 2, 6, 4, 6, 4, 4, 2, 11, 2, 4, 5, 2, 4, 8, 2, 5, 4, 8, 2, 10, 2, 4, 5, 5, 4, 8, 2, 5, 2, 4, 2, 11, 4, 4, 4, 6, 2, 11, 4, 5, 4, 4, 4, 9, 2, 5, 5, 4
Offset: 1

Views

Author

Leroy Quet, Feb 27 2008

Keywords

Examples

			12 has 6 divisors (1,2,3,4,6,12). The number of divisors of each of these divisors of 12 form the sequence (1,2,2,3,4,6). Of these, five divide d(12)=6: 1,2,2,3,6. So a(12) = 5.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Divisors[n], Mod[Length[Divisors[n]], Length[Divisors[ # ]]] == 0 &]], {n, 1, 100}] (* Stefan Steinerberger, Feb 29 2008 *)
  • PARI
    A138011(n) = sumdiv(n,d,if(!(numdiv(n)%numdiv(d)), 1, 0)); \\ Antti Karttunen, May 25 2017
    
  • Python
    from sympy import divisors, divisor_count
    def a(n): return sum([1*(divisor_count(n)%divisor_count(d)==0) for d in divisors(n)]) # Indranil Ghosh, May 25 2017

Extensions

More terms from Stefan Steinerberger, Feb 29 2008

A138012 a(n) = number of positive divisors, k, of n where d(k) divides n (where d(k) = number of positive divisors of k, A000005).

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 1, 3, 2, 3, 1, 6, 1, 3, 1, 3, 1, 5, 1, 4, 1, 3, 1, 8, 1, 3, 2, 4, 1, 4, 1, 3, 1, 3, 1, 9, 1, 3, 1, 6, 1, 4, 1, 4, 2, 3, 1, 8, 1, 3, 1, 4, 1, 5, 1, 6, 1, 3, 1, 11, 1, 3, 2, 3, 1, 4, 1, 4, 1, 4, 1, 12, 1, 3, 2, 4, 1, 4, 1, 8, 2, 3, 1, 11, 1, 3, 1, 6, 1, 7, 1, 4, 1, 3, 1, 10, 1, 3, 2, 4, 1, 4, 1, 6
Offset: 1

Views

Author

Leroy Quet, Feb 27 2008

Keywords

Comments

First occurrence of k: 1, 2, 6, 20, 18, 12, 90, 24, 36, 96, 60, 72, 5670, 972, 120, 336, 180, 420, 540, 240, 600, 2352, 360, 480, 900, 3000, 840, 1080, 1260, 720, ..., . - Robert G. Wilson v

Examples

			10 has 4 divisors (1,2,5,10). The number of divisors of each of these divisors of 10 form the sequence (1,2,2,4). Of these, three divide 10: 1,2,2. So a(10) = 3.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) local div, ct, j: div:=divisors(n): ct:=0: for j to tau(n) do if `mod`(n, tau(div[j]))=0 then ct:=ct+1 else end if end do: ct end proc: seq(a(n),n=1..80); # Emeric Deutsch, Mar 14 2008
  • Mathematica
    Table[Length[Select[Divisors[n], Mod[n, Length[Divisors[ # ]]] == 0 &]], {n,1,100}] (* Stefan Steinerberger *)
    f[n_] := Count[Mod[n, DivisorSigma[0, Divisors@n]], 0]; Array[f, 104] (* Robert G. Wilson v *)
  • PARI
    A138012(n) = sumdiv(n,d,if(!(n%numdiv(d)), 1, 0)); \\ Antti Karttunen, May 25 2017
    
  • Python
    from sympy import divisors, divisor_count
    def a(n): return sum([1*(n%divisor_count(d)==0) for d in divisors(n)]) # Indranil Ghosh, May 25 2017

Extensions

More terms from Stefan Steinerberger and Robert G. Wilson v, Feb 29 2008
Showing 1-3 of 3 results.