cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A138010 a(n) is the number of positive divisors of n that divide d(n), where d(n) is the number of positive divisors of n, A000005(n); a(n) also equals d(gcd(n, d(n))).

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 6, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 2, 2, 1, 2, 1, 4, 1, 2, 1, 6, 1, 2, 1, 4, 1, 4, 1, 2, 1, 2, 1, 6, 1, 2, 2, 1, 1, 2, 1, 4, 1, 2, 1, 6, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4
Offset: 1

Views

Author

Leroy Quet, Feb 27 2008

Keywords

Examples

			12 has 6 divisors (1,2,3,4,6,12). Those divisors of 12 that divide 6 are 1,2,3,6. Since there are 4 of these, then a(12) = 4.
		

Crossrefs

Programs

  • Magma
    [#Divisors( Gcd(n,#Divisors(n))):n in [1..120]]; // Marius A. Burtea, Aug 03 2019
  • Maple
    with(numtheory): a:=proc(n) local div,c,j: div:=divisors(n): c:=0: for j to tau(n) do if `mod`(tau(n), div[j])=0 then c:=c+1 else end if end do: c end proc: seq(a(n),n=1..90); # Emeric Deutsch, Mar 02 2008
  • Mathematica
    Table[Length[Select[Divisors[n], Mod[Length[Divisors[n]], # ] == 0 &]], {n,1,100}] (* Stefan Steinerberger, Feb 29 2008 *)
    Table[Count[DivisorSigma[0,n]/Divisors[n],?IntegerQ],{n,120}] (* _Harvey P. Dale, May 31 2019 *)
  • PARI
    A138010(n) = sumdiv(n,d,if(!(numdiv(n)%d), 1, 0)); \\ Antti Karttunen, May 25 2017
    
  • Python
    from sympy import divisors, divisor_count
    def a(n): return sum([ 1*(divisor_count(n)%d==0) for d in divisors(n)]) # Indranil Ghosh, May 25 2017
    
  • Scheme
    (define (A138010 n) (A000005 (gcd n (A000005 n)))) ;; Antti Karttunen, May 25 2017
    

Formula

a(n) = A000005(A009191(n)). [From the alternative description.] - Antti Karttunen, May 25 2017

Extensions

More terms from Stefan Steinerberger and Emeric Deutsch, Feb 29 2008
Further extended (to 120 terms) by Antti Karttunen, May 25 2017

A138012 a(n) = number of positive divisors, k, of n where d(k) divides n (where d(k) = number of positive divisors of k, A000005).

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 1, 3, 2, 3, 1, 6, 1, 3, 1, 3, 1, 5, 1, 4, 1, 3, 1, 8, 1, 3, 2, 4, 1, 4, 1, 3, 1, 3, 1, 9, 1, 3, 1, 6, 1, 4, 1, 4, 2, 3, 1, 8, 1, 3, 1, 4, 1, 5, 1, 6, 1, 3, 1, 11, 1, 3, 2, 3, 1, 4, 1, 4, 1, 4, 1, 12, 1, 3, 2, 4, 1, 4, 1, 8, 2, 3, 1, 11, 1, 3, 1, 6, 1, 7, 1, 4, 1, 3, 1, 10, 1, 3, 2, 4, 1, 4, 1, 6
Offset: 1

Views

Author

Leroy Quet, Feb 27 2008

Keywords

Comments

First occurrence of k: 1, 2, 6, 20, 18, 12, 90, 24, 36, 96, 60, 72, 5670, 972, 120, 336, 180, 420, 540, 240, 600, 2352, 360, 480, 900, 3000, 840, 1080, 1260, 720, ..., . - Robert G. Wilson v

Examples

			10 has 4 divisors (1,2,5,10). The number of divisors of each of these divisors of 10 form the sequence (1,2,2,4). Of these, three divide 10: 1,2,2. So a(10) = 3.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) local div, ct, j: div:=divisors(n): ct:=0: for j to tau(n) do if `mod`(n, tau(div[j]))=0 then ct:=ct+1 else end if end do: ct end proc: seq(a(n),n=1..80); # Emeric Deutsch, Mar 14 2008
  • Mathematica
    Table[Length[Select[Divisors[n], Mod[n, Length[Divisors[ # ]]] == 0 &]], {n,1,100}] (* Stefan Steinerberger *)
    f[n_] := Count[Mod[n, DivisorSigma[0, Divisors@n]], 0]; Array[f, 104] (* Robert G. Wilson v *)
  • PARI
    A138012(n) = sumdiv(n,d,if(!(n%numdiv(d)), 1, 0)); \\ Antti Karttunen, May 25 2017
    
  • Python
    from sympy import divisors, divisor_count
    def a(n): return sum([1*(n%divisor_count(d)==0) for d in divisors(n)]) # Indranil Ghosh, May 25 2017

Extensions

More terms from Stefan Steinerberger and Robert G. Wilson v, Feb 29 2008

A183008 a(n) = 24*p(n) = 24*A000041(n).

Original entry on oeis.org

24, 24, 48, 72, 120, 168, 264, 360, 528, 720, 1008, 1344, 1848, 2424, 3240, 4224, 5544, 7128, 9240, 11760, 15048, 19008, 24048, 30120, 37800, 46992, 58464, 72240, 89232, 109560, 134496, 164208, 200376, 243432, 295440, 357192, 431448, 519288, 624360, 748440
Offset: 0

Views

Author

Omar E. Pol, Jan 22 2011

Keywords

Comments

a(n) is also the area of one of the faces of the rectangular cuboid which is a three-dimensional version of the shell model of partitions of n. The areas of the other faces are A008606(n)=24*n and A066186(n)=n*p(n), where p(n) is the number of partitions of n. See A135010 for more information.

Examples

			The number of partitions of 6 is p(6) = A000041(6) = 11, so a(6) = 24*11 = 264.
		

Crossrefs

Programs

  • Mathematica
    24 PartitionsP[Range[0,40]] (* Harvey P. Dale, Sep 17 2024 *)
Showing 1-3 of 3 results.