cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A159636 Dimension of space of cusp forms of weight 5/2, level 4*n and trivial character.

Original entry on oeis.org

0, 0, 1, 0, 3, 3, 4, 2, 6, 6, 7, 6, 9, 9, 14, 6, 12, 12, 13, 12, 20, 15, 16, 16, 18, 18, 21, 18, 21, 30, 22, 16, 32, 24, 32, 24, 27, 27, 38, 28, 30, 42, 31, 30, 48, 33, 34, 36, 36, 36, 50, 36, 39, 45, 50, 40, 56, 42, 43, 60
Offset: 1

Views

Author

Steven Finch, Apr 17 2009

Keywords

Crossrefs

Programs

  • Magma
    [[4*n,Dimension(CuspidalSubspace(HalfIntegralWeightForms(4*n,5/2)))] : n in [1..75]];
  • Mathematica
    dedekindPsi[n_Integer] := n*Times @@ (1 + 1/First /@ FactorInteger[n]);
    \[Chi][n_Integer] := Sum[EulerPhi[GCD[d, n/d]], {d, Divisors[n]}];
    r[(p_)?PrimeQ, n_Integer] := -1+ Last[Flatten[Cases[FactorInteger[p*n], {p, _}]]];
    \[Alpha][n_Integer] := Block[{rn}, rn = r[2, n]; If[EvenQ[rn], 3*2^(rn/2 - 1), 2^(rn/2 + 1/2)]];
    \[Beta][n_Integer] := Block[{rn}, rn = r[2, n]; Which[rn >= 4, \[Alpha][n], rn === 3, 3, rn === 2 && Or @@ OddQ[(r[#1, n] & ) /@ Select[First /@ FactorInteger[n], Mod[#1, 4] === 3 & ]], 2, True, 3/2]];
    s[5/2, n_Integer] := (1/8)* dedekindPsi[n] - \[Beta][n]*(\[Chi][n]/2/\[Alpha][n]);
    s[5/2, #] & /@ Range[4, 240, 4] (* Wouter Meeussen, cf. Finch reference, Mar 31 2014 *)

A159630 Dimension of space of modular forms for Gamma_0(4*n) of weight 3/2 and trivial character.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 4, 6, 6, 6, 5, 10, 5, 7, 10, 10, 6, 12, 7, 12, 12, 9, 8, 16, 12, 10, 15, 14, 9, 18, 10, 16, 16, 12, 16, 24, 11, 13, 18, 20, 12, 22, 13, 18, 24, 15, 14, 28, 20, 24, 22, 20, 15, 27, 22, 24, 24, 18, 17, 36, 17, 19, 32, 28, 24, 30, 19, 24, 28, 30, 20, 40, 20, 22, 42
Offset: 1

Views

Author

Steven Finch, Apr 17 2009

Keywords

Crossrefs

Programs

  • Magma
    [Dimension(HalfIntegralWeightForms(4*n,3/2)) : n in [1..80]];
    
  • Magma
    a := func< n | Dimension( ModularForms( Gamma0(4*n), 3/2))>; /* Michael Somos, Jul 27 2014 */

A031359 Bisection of A001615.

Original entry on oeis.org

1, 4, 6, 8, 12, 12, 14, 24, 18, 20, 32, 24, 30, 36, 30, 32, 48, 48, 38, 56, 42, 44, 72, 48, 56, 72, 54, 72, 80, 60, 62, 96, 84, 68, 96, 72, 74, 120, 96, 80, 108, 84, 108, 120, 90, 112, 128, 120, 98, 144, 102, 104, 192, 108, 110, 152, 114, 144, 168, 144, 132, 168
Offset: 1

Views

Author

Keywords

Comments

Number of coincidence site lattices of index 2n-1 in lattice Z^3.

Examples

			G.f. = x + 4*x^2 + 6*x^3 + 8*x^4 + 12*x^5 + 12*x^6 + 14*x^7 + 24*x^8 + ...
G.f. = q + 4*q^3 + 6*q^5 + 8*q^7 + 12*q^9 + 12*q^11 + 14*q^13 + 24*q^15 + ...
		

References

  • Michael Baake, "Solution of the coincidence problem in dimensions d <= 4", in R. V. Moody, ed., Mathematics of Long-Range Aperiodic Order, Kluwer, 1997, pp. 9-44.

Crossrefs

Programs

  • Haskell
    a031359 = a001615 . (subtract 1) . (* 2)
    -- Reinhard Zumkeller, Jun 03 2013
    
  • Maple
    A001615 := n -> mul((op(1,i)+1)*op(1,i)^(op(2,i)-1),i=op(2,numtheory[ifactors](n)));
    A031359 := n -> A001615(2*n-1); # Peter Luschny, Oct 23 2010
  • Mathematica
    a[n_] := (2n-1)*Sum[ MoebiusMu[d]^2/d, {d, Divisors[2n-1]}]; Table[a[n], {n, 1, 62}] (* Jean-François Alcover, Jan 18 2012, after Michael Somos *)
    a[ n_] := If[ n < 1, 0, With[{m = 2 n - 1}, m Sum[ MoebiusMu[ d]^2 / d, {d, Divisors[m]}]]] (* Michael Somos, Nov 22 2013 *)
  • PARI
    {a(n) = my(m); if( n<1, 0, m = 2*n - 1; m * sumdiv( m, d, moebius(d)^2 / d))} /* Michael Somos, Nov 22 2013 */
    
  • PARI
    {a(n) = my(m); if( n<1, 0, m = 2*n - 1; direuler( p=2, m, (1 + X) / (1 - p*X))[ m])} /* Michael Somos, Nov 22 2013 */
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, n = 2*n - 1; A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 0, p^(e-1) * (p + 1)))))} /* Michael Somos, Nov 22 2013 */

Formula

a(n) = b(2*n - 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = p^(e-1) * (p+1) if p > 2. - Michael Somos, Nov 22 2013
Dirichlet series: Product (1+p^(-s))/(1-p^(1-s)); p != 2.
a(n) = A001615(2*n - 1).
From Peter Bala, Mar 19 2019: (Start)
a(n) = (2*n - 1)*Product_{p|(2*n-1), p prime} (1 + 1/p).
a(n) = Sum_{ d|(2*n-1) } mu(d)^2*(2*n-1)/d, where mu(n) = A008683(n) is the Möbius function.
a(n) = Sum_{ d^2|(2*n-1) } mu(d)*sigma((2*n-1)/d^2), where sigma(n) = A000203(n) is the sum of the divisors of n, and also
a(n) = Sum_{ d|(2*n-1) } 2^omega(d)*phi((2*n-1)/d), where omega(n) = A001221(n) is the number of different primes dividing n and phi(n) = A000010 is the Euler totient function.
O.g.f.: Sum_{n >= 1} mu(2*n-1)^2*x^n*(1 + x^(2*n-1))/(1 - x^(2*n-1))^2.
Bisection of A159634. (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = 12/Pi^2 = 1.215854... . - Amiram Eldar, Nov 24 2022

Extensions

Better description from Vladeta Jovovic, Jan 25 2002
More terms from Sascha Kurz, Mar 24 2002

A159633 Dimension of Eisenstein subspace of the space of modular forms of weight k/2, level 4*n and trivial character, where k>=5 is odd.

Original entry on oeis.org

2, 3, 4, 6, 4, 6, 4, 8, 8, 6, 4, 12, 4, 6, 8, 12, 4, 12, 4, 12, 8, 6, 4, 16, 12, 6, 12, 12, 4, 12, 4, 16, 8, 6, 8, 24, 4, 6, 8, 16, 4, 12, 4, 12, 16, 6, 4, 24, 16, 18, 8, 12, 4, 18, 8, 16, 8, 6, 4, 24, 4, 6, 16, 24, 8, 12, 4, 12, 8, 12, 4, 32, 4, 6, 24, 12, 8, 12, 4, 24, 24, 6, 4, 24, 8, 6, 8, 16, 4
Offset: 1

Views

Author

Steven Finch, Apr 17 2009

Keywords

Comments

Denote dim{M_k(Gamma_0(N))} by m(k,N) and dim{S_k(Gamma_0(N))} by s(k,N).
We have:
m(3/2,N)-s(3/2,N)+m(1/2,N)-s(1/2,N) =
m(5/2,N)-s(5/2,N) = m(7/2,N)-s(7/2,N) =
m(9/2,N)-s(9/2,N) = m(11/2,N)-s(11/2,N) = ...
m(k/2,N)-s(k/2,N) = ...
where N is any positive multiple of 4 and k>=5 is odd.
a(n) = A159635(n) - A159636(n). - Steven Finch, Apr 22 2009
Conjecture: a(n) = 2*chi(n) - if(mod(n+2,4)=0, chi(n)/2, 0) with chi(n) = A001616(n) = Sum_{d|n} phi(gcd(d,n/d)); checked up to n=1024. - Wouter Meeussen, Apr 02 2014

References

  • K. Ono, The Web of Modularity: Arithmetic of Coefficients of Modular Forms and q-series. American Mathematical Society, 2004 (p. 16, theorem 1.56).

Crossrefs

Programs

  • Magma
    [[4*n,Dimension(HalfIntegralWeightForms(4*n,5/2))-Dimension(CuspidalSubspace(HalfIntegralWeightForms(4*n,5/2)))] : n in [1..100]]; [[4*n,Dimension(HalfIntegralWeightForms(4*n,7/2))-Dimension(CuspidalSubspace(HalfIntegralWeightForms(4*n,7/2)))] : n in [1..100]]; [[4*n,Dimension(HalfIntegralWeightForms(4*n,3/2))-Dimension(CuspidalSubspace(HalfIntegralWeightForms(4*n,3/2)))+Dimension(HalfIntegralWeightForms(4*n,1/2))-Dimension(CuspidalSubspace(HalfIntegralWeightForms(4*n,1/2)))] : n in [1..100]];
  • Mathematica
    (* see link, conjecture proved by P. Humphries *)
    chi[n_Integer]:=Sum[EulerPhi[GCD[d,n/d]],{d,Divisors[n]}];
    2 chi[#] - If[Mod[# + 2, 4] == 0, chi[#]/2, 0] & /@ Range[89]
    (* Wouter Meeussen, Apr 06 2014 *)
Showing 1-4 of 4 results.