A001617 Genus of modular group Gamma_0(n). Or, genus of modular curve X_0(n).
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 2, 2, 1, 0, 2, 1, 2, 2, 3, 2, 1, 3, 3, 3, 1, 2, 4, 3, 3, 3, 5, 3, 4, 3, 5, 4, 3, 1, 2, 5, 5, 4, 4, 5, 5, 5, 6, 5, 7, 4, 7, 5, 3, 5, 9, 5, 7, 7, 9, 6, 5, 5, 8, 5, 8, 7, 11, 6, 7, 4, 9, 7, 11, 7, 10, 9, 9, 7, 11, 7, 10, 9, 11, 9, 9, 7, 7, 9, 7, 8, 15
Offset: 1
Examples
G.f. = x^11 + x^14 + x^15 + x^17 + x^19 + x^20 + x^21 + 2*x^22 + 2*x^23 + ...
References
- B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 103.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Gheorghe Coserea, Table of n, a(n) for n = 1..50000 (first 1000 terms from N. J. A. Sloane)
- J. A. Csirik, M. Zieve, and J. Wetherell, On the genera of X0(N), arXiv:math/0006096 [math.NT], 2000.
- Harriet Fell, Morris Newman, and Edward Ordman, Tables of genera of groups of linear fractional transformations, J. Res. Nat. Bur. Standards Sect. B 67B 1963 61-68.
- Steven R. Finch, Modular forms on SL_2(Z), December 28, 2005. [Cached copy, with permission of the author]
- Ralf Hemmecke, Peter Paule, and Silviu Radu, Construction of Modular Function Bases for Gamma_0(121) related to p*(11*n + 6), (2019).
- Nicolas Allen Smoot, Computer algebra with the fifth operation: applications of modular functions to partition congruences, Ph. D. Thesis, Johannes Kepler Univ., Linz (Austria 2022), 33.
- Index entries for sequences related to modular groups
Programs
-
Magma
a := func< n | n lt 1 select 0 else Dimension( CuspForms( Gamma0(n), 2))>; /* Michael Somos, May 08 2015 */
-
Maple
nu2 := proc (n) # number of elliptic points of order two (A000089) local i, s; if modp(n,4) = 0 then RETURN(0) fi; s := 1; for i in divisors(n) do if isprime(i) and i > 2 then s := s*(1+eval(legendre(-1,i))) fi od; s end: nu3 := proc (n) # number of elliptic points of order three (A000086) local d, s; if modp(n,9) = 0 then RETURN(0) fi; s := 1; for d in divisors(n) do if isprime(d) then s := s*(1+eval(legendre(-3,d))) fi od; s end: nupara := proc (n) # number of parabolic cusps (A001616) local b, d; b := 0; for d to n do if modp(n,d) = 0 then b := b+eval(phi(gcd(d,n/d))) fi od; b end: A001615 := proc(n) local i,j; j := n; for i in divisors(n) do if isprime(i) then j := j*(1+1/i); fi; od; j; end; genx := proc (n) # genus of X0(n) (A001617) #1+1/12*psi(n)-1/4*nu2(n)-1/3*nu3(n)-1/2*nupara(n) end: 1+1/12*A001615(n)-1/4*nu2(n)-1/3*nu3(n)-1/2*nupara(n) end: # Gene Ward Smith, May 23 2006
-
Mathematica
nu2[n_] := Module[{i, s}, If[Mod[n, 4] == 0, Return[0]]; s = 1; Do[ If[ PrimeQ[i] && i > 2, s = s*(1 + JacobiSymbol[-1, i])], {i, Divisors[n]}]; s]; nu3[n_] := Module[{d, s}, If[Mod[n, 9] == 0, Return[0]]; s = 1; Do[ If[ PrimeQ[d], s = s*(1 + JacobiSymbol[-3, d])], {d, Divisors[n]}]; s]; nupara[n_] := Module[{b, d}, b = 0; For[d = 1, d <= n, d++, If[ Mod[n, d] == 0, b = b + EulerPhi[ GCD[d, n/d]]]]; b]; A001615[n_] := Module[{i, j}, j = n; Do[ If[ PrimeQ[i], j = j*(1 + 1/i)], {i, Divisors[n]}]; j]; genx[n_] := 1 + (1/12)*A001615[n] - (1/4)*nu2[n] - (1/3)*nu3[n] - (1/2)*nupara[n]; A001617 = Table[ genx[n], {n, 1, 102}] (* Jean-François Alcover, Jan 04 2012, after Gene Ward Smith's Maple program *) a[ n_] := If[ n < 1, 0, 1 + Sum[ MoebiusMu[ d]^2 n/d / 12 - EulerPhi[ GCD[ d, n/d]] / 2, {d, Divisors @n}] - Count[(#^2 - # + 1)/n & /@ Range[n], ?IntegerQ]/3 - Count[ (#^2 + 1)/n & /@ Range[n], ?IntegerQ]/4]; (* Michael Somos, May 08 2015 *)
-
PARI
A000089(n) = { if (n%4 == 0 || n%4 == 3, return(0)); if (n%2 == 0, n \= 2); my(f = factor(n), fsz = matsize(f)[1]); prod(k = 1, fsz, if (f[k,1] % 4 == 3, 0, 2)); }; A000086(n) = { if (n%9 == 0 || n%3 == 2, return(0)); if (n%3 == 0, n \= 3); my(f = factor(n), fsz = matsize(f)[1]); prod(k = 1, fsz, if (f[k,1] % 3 == 2, 0, 2)); }; A001615(n) = { my(f = factor(n), fsz = matsize(f)[1], g = prod(k=1, fsz, (f[k,1]+1)), h = prod(k=1, fsz, f[k,1])); return((n*g)\h); }; A001616(n) = { my(f = factor(n), fsz = matsize(f)[1]); prod(k = 1, fsz, f[k,1]^(f[k,2]\2) + f[k,1]^((f[k,2]-1)\2)); }; a(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2; vector(102, n, a(n)) \\ Gheorghe Coserea, May 20 2016
Formula
From Gheorghe Coserea, May 20 2016: (Start)
limsup a(n) / (n*log(log(n))) = exp(Euler)/(2*Pi^2), where Euler is A001620.
a(n) >= (n-5*sqrt(n)-8)/12, with equality iff n = p^2 for prime p=1 (mod 12) (see A068228).
a(n) < n * exp(Euler)/(2*Pi^2) * (log(log(n)) + 2/log(log(n))) for n>=3 (see Csirik link).
(End)
Comments