A001678 Number of series-reduced planted trees with n nodes.
0, 0, 1, 0, 1, 1, 2, 3, 6, 10, 19, 35, 67, 127, 248, 482, 952, 1885, 3765, 7546, 15221, 30802, 62620, 127702, 261335, 536278, 1103600, 2276499, 4706985, 9752585, 20247033, 42110393, 87733197, 183074638, 382599946, 800701320, 1677922740, 3520581954
Offset: 0
Examples
--------------- Examples (i=internal,e=external): --------------------------- |.n=2.|..n=4..|..n=5..|...n=6.............|....n=7..........................| |.....|.......|.......|.............e...e.|................e.e.e......e...e.| |.....|.e...e.|.e.e.e.|.e.e.e.e...e...i...|.e.e.e.e.e...e....i....e.e...i...| |..e..|...i...|...i...|....i........i.....|.....i..........i..........i.....| |..e..|...e...|...e...|....e........e.....|.....e..........e..........e.....| ----------------------------------------------------------------------------- G.f. = x^2 + x^4 + x^5 + 2*x^6 + 3*x^7 + 6*x^8 + 10*x^9 + 19*x^10 + ... From _Joerg Arndt_, Jun 28 2014: (Start) The a(8) = 6 rooted trees with 7 nodes as described in the comment are: : level sequence out-degrees (dots for zeros) : 1: [ 0 1 2 3 3 2 1 ] [ 2 2 2 . . . . ] : O--o--o--o : .--o : .--o : .--o : : 2: [ 0 1 2 2 2 2 1 ] [ 2 4 . . . . . ] : O--o--o : .--o : .--o : .--o : .--o : : 3: [ 0 1 2 2 2 1 1 ] [ 3 3 . . . . . ] : O--o--o : .--o : .--o : .--o : .--o : : 4: [ 0 1 2 2 1 2 2 ] [ 2 2 . . 2 . . ] : O--o--o : .--o : .--o--o : .--o : : 5: [ 0 1 2 2 1 1 1 ] [ 4 2 . . . . . ] : O--o--o : .--o : .--o : .--o : .--o : : 6: [ 0 1 1 1 1 1 1 ] [ 6 . . . . . . ] : O--o : .--o : .--o : .--o : .--o : .--o : (End) From _Gus Wiseman_, Jan 20 2020: (Start) The a(2) = 1 through a(9) = 10 unlabeled lone-child-avoiding rooted trees with n - 1 nodes (empty n = 3 column shown as dot) are: o . (oo) (ooo) (oooo) (ooooo) (oooooo) (ooooooo) (o(oo)) (o(ooo)) (o(oooo)) (o(ooooo)) (oo(oo)) (oo(ooo)) (oo(oooo)) (ooo(oo)) (ooo(ooo)) ((oo)(oo)) (oooo(oo)) (o(o(oo))) ((oo)(ooo)) (o(o(ooo))) (o(oo)(oo)) (o(oo(oo))) (oo(o(oo))) (End)
References
- D. G. Cantor, personal communication.
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 525.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 62.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 501 terms from Christian G. Bower)
- David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
- F. Harary and E. M. Palmer, Probability that a point of a tree is fixed, Math. Proc. Camb. Phil. Soc. 85 (1979) 407-415.
- F. Harary and G. Prins, The number of homeomorphically irreducible trees and other species, Acta Math., 101 (1959), 141-162.
- F. Harary, R. W. Robinson and A. J. Schwenk, Twenty-step algorithm for determining the asymptotic number of trees of various species, J. Austral. Math. Soc., Series A, 20 (1975), 483-503.
- F. Harary, R. W. Robinson and A. J. Schwenk, Corrigenda: Twenty-step algorithm for determining the asymptotic number of trees of various species, J. Austral. Math. Soc., Series A 41 (1986), p. 325.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 404
- Marko Riedel, Generating functions of unordered rooted trees with n nodes where nodes cannot have out-degree 1, classified by the number of leaves, using the Polya Enumeration Theorem and the exponential formula.
- Eric Weisstein's World of Mathematics, Series-reduced tree.
- Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
Crossrefs
Unlabeled rooted trees are counted by A000081.
Topologically series-reduced rooted trees are counted by A001679.
Labeled lone-child-avoiding rooted trees are counted by A060356.
Labeled lone-child-avoiding unrooted trees are counted by A108919.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.
Singleton-reduced rooted trees are counted by A330951.
Programs
-
Maple
with (powseries): with (combstruct): n := 30: sys := {B = Prod(C,Z), S = Set(B,1 <= card), C = Union(Z,S)}: A001678 := 1,0,1,seq(count([S, sys, unlabeled],size=i),i=1..n); # Ulrich Schimke (ulrschimke(AT)aol.com) # second Maple program: with(numtheory): b:= proc(n) option remember; `if`(n=0, 1, add(add( d*a(d+1), d=divisors(j))*b(n-j), j=1..n)/n) end: a:= proc(n) option remember; `if`(n<2, 0, `if`(n=2, 1, b(n-2)-a(n-1))) end: seq(a(n), n=0..50); # Alois P. Heinz, Jul 02 2014
-
Mathematica
b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*a[d+1], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; a[n_] := a[n] = If[n < 2, 0, If[n == 2, 1, b[n-2] - a[n-1]]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Sep 24 2014, after Alois P. Heinz *) terms = 38; A[] = 0; Do[A[x] = (x^2/(1+x))*Exp[Sum[A[x^k]/(k*x^k), {k, 1, j}]] + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 12 2018 *) urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}]; Table[If[n<=1,0,Length[Select[urt[n-1],FreeQ[#,{}]&]]],{n,0,10}] (* _Gus Wiseman, Jan 20 2020 *)
-
PARI
(a(n) = if( n<4, n==2, T(n-2, n-3))); /* where */ {T(n, k) = if( n<1 || k<1, (n==0) && (k>=0), sum(j=1, k, sum(i=1, n\j, T(n-i*j, min(n-i*j, j-1)) * binomial( a(j+1) + i-1, i))))}; /* Michael Somos, Jun 04 2002 */
-
PARI
{a(n) = local(A); if( n<3, n==2, A = x / (1 - x^2) + O(x^n); for(k=3, n-2, A /= (1 - x^k + O(x^n))^polcoeff(A, k)); polcoeff(A, n-1))}; /* Michael Somos, Oct 06 2003 */
Formula
G.f.: A(x) satisfies A(x) = (x^2/(1+x))*exp( Sum_{k>=1} A(x^k)/(k*x^k) ) [Harary and E. M. Palmer, 1973, p. 62, Eq. (3.3.8)].
G.f.: A(x) = Sum_{n>=2} a(n) * x^n = x^2 / ((1 + x) * Product_{k>0} (1 - x^k)^a(k+1)). - Michael Somos, Oct 06 2003
a(n) ~ c * d^n / n^(3/2), where d = A246403 = 2.189461985660850563... and c = 0.1924225474701550354144525345664845514828912790855223729854471406053655209... - Vaclav Kotesovec, Jun 26 2014
a(n) = Sum_{i=2..n-2} A106179(i, n-1-i) for n >= 3. - Andrew Howroyd, Mar 29 2021
Extensions
Additional comments from Michael Somos, Jun 05 2002
Comments