A001682 Numbers k such that 3^k, 3^(k+1) and 3^(k+2) have the same number of digits.
0, 21, 42, 65, 86, 109, 130, 151, 174, 195, 218, 239, 262, 283, 304, 327, 348, 371, 392, 415, 436, 457, 480, 501, 524, 545, 568, 589, 610, 633, 654, 677, 698, 721, 742, 763, 786, 807, 830, 851, 874, 895, 916, 939, 960, 983, 1004, 1027, 1048
Offset: 1
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Murray Klamkin and Joe Lipman, Problem E1238, Amer. Math. Monthly, 64 (1957), 367.
Programs
-
Haskell
a001682 n = a001682_list !! (n-1) a001682_list = [k | k <- [0..], let m = 3^k, a055642 m == a055642 (9*m)] -- Reinhard Zumkeller, Oct 10 2011
-
Mathematica
Select[Range[0, 2000], IntegerLength[3^#] == IntegerLength[3^(#+1)] == IntegerLength[3^(#+2)]&] (* Jean-François Alcover, Nov 24 2011 *) Flatten[Position[Partition[IntegerLength[3^Range[0,1100]],3,1],?( Length[ Union[#]]==1&),{1},Heads->False]]-1 (* _Harvey P. Dale, Jan 31 2015 *) SequencePosition[IntegerLength[3^Range[0,1200]],{x_,x_,x_}][[All,1]]-1 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 12 2018 *)
Extensions
More terms from R. K. Guy and Emeric Deutsch, Mar 09 2005
Comments