cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001683 Number of one-sided triangulations of the disk; or flexagons of order n; or unlabeled plane trivalent trees (n-2 internal vertices, all of degree 3 and hence n leaves).

Original entry on oeis.org

1, 1, 1, 1, 4, 6, 19, 49, 150, 442, 1424, 4522, 14924, 49536, 167367, 570285, 1965058, 6823410, 23884366, 84155478, 298377508, 1063750740, 3811803164, 13722384546, 49611801980, 180072089896, 655977266884, 2397708652276, 8791599732140, 32330394085528
Offset: 2

Views

Author

Keywords

Comments

a(n) is the number of triangulations of an n-gon (equivalently, the number of vertices of the (n - 3)-dimensional associahedron) modulo the cyclic action [Bowman and Regev]. - N. J. A. Sloane, Dec 29 2012
a(n) is also the number of non-isomorphic cluster-tilted algebras of type A_(n-3), for n greater than or equal to 5. Equivalently it is the number of non-isomorphic quivers in the mutation class of any quiver with underlying graph A_(n-3) for n greater than or equal to 5. - Hermund A. Torkildsen (hermunda(AT)math.ntnu.no), Aug 06 2008
Number of oriented polyominoes composed of n-2 triangular cells of the hyperbolic regular tiling with Schläfli symbol {3,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. For oriented polyominoes, chiral pairs are counted as two. - Robert A. Russell, Jan 20 2024

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A295224.
A row or column of the array in A262586.
Polyominoes: A000207 (unoriented), A369314 (chiral), A208355(n-1) (achiral), A005034 {4,oo}, A007173 {3,3,oo}.

Programs

  • Maple
    C := n->binomial(2*n,n)/(n+1); c := x->if whattype(x) = integer then C(x) else 0; fi; A001683 := n->C(n-2)/n + c(n/2-1)/2+(2/3)*c(n/3-1);
  • Mathematica
    p=3; Table[Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) +If[OddQ[n], 0, Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1}]], {n, 0, 20}] (* Robert A. Russell, Dec 11 2004 *)
    Rest[Rest[CoefficientList[Series[(6 + (1 - 4 x)^(3/2) + 6 x - 3(1 - 4 x^2)^(1/2) - 4 (1 - 4 x^3)^(1/2))/12, {x, 0, 33}], x]]] (* Vincenzo Librandi, Nov 25 2015 *)
  • PARI
    Cat(n)=if(n==floor(n),return(binomial(2*n,n)/(n+1)));0
    for(n=2,100,print1(Cat(n-2)/n+Cat(n/2-1)/2+(2/3)*Cat(n/3-1),", ")) \\ Derek Orr, Feb 26 2017

Formula

a(n) = C(n-2)/n + C(n/2-1)/2 + (2/3)*C(n/3-1), where C(n) = Catalan(n) (A000108) and terms are omitted if their subscripts are not integers.
G.f.: (6 + (1 - 4*x)^(3/2) + 6*x - 3*(1 - 4*x^2)^(1/2) - 4*(1 - 4*x^3)^(1/2))/12. - David Callan, Aug 01 2004
a(n) ~ 2^(2*n-4) / (sqrt(Pi) * n^(5/2)). - Vaclav Kotesovec, Mar 13 2016
a(n+2) = A000207(n) + A369314(n) = 2*A000207(n) - A208355(n-1) = 2*A369314(n) + A208355(n-1). - Robert A. Russell, Jan 19 2024
G.f.: z^2 * (4*G(z) - G(z)^2 + 3*G(z^2) + 4*z*G(z^3)) / 6, where G(z) = 1 + z*G(z)^2 is the g.f. for A000108. - Robert A. Russell, Apr 06 2024