A001692 Number of irreducible polynomials of degree n over GF(5); dimensions of free Lie algebras.
1, 5, 10, 40, 150, 624, 2580, 11160, 48750, 217000, 976248, 4438920, 20343700, 93900240, 435959820, 2034504992, 9536718750, 44878791360, 211927516500, 1003867701480, 4768371093720, 22706531339280
Offset: 0
References
- E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003
- M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 79.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1435 (terms 0..200 from T. D. Noe)
- Alin Bostan, Alexander Marynych, and Kilian Raschel, On the least common multiple of several random~integers, arXiv:1901.03002 [math.PR], 2019.
- Jeremie Detrey, P. J. Spaenlehauer, and P. Zimmermann, Computing the rho constant, Preprint 2016.
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
- Gareth A. Jones and Alexander K. Zvonkin, Groups of prime degree and the Bateman-Horn conjecture, 2021.
- G. Niklasch, Some number theoretical constants: 1000-digit values [Cached copy]
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Dionisel Y. Regalado and Rodel Azura, An Analytic Approximation to the Density of Twin Primes, Recoletos Multidisciplinary Research Journal (2019) Vol. 6, No. 2.
- G. J. Simmons, The number of irreducible polynomials of degree n over GF(p), Amer. Math. Monthly, 77 (1970), 743-745.
- G. Viennot, Algèbres de Lie Libres et Monoïdes Libres, Lecture Notes in Mathematics 691, Springer Verlag 1978.
- Index entries for sequences related to Lyndon words
Crossrefs
Programs
-
Haskell
a001692 n = flip div n $ sum $ zipWith (*) (map a008683 divs) (map a000351 $ reverse divs) where divs = a027750_row n -- Reinhard Zumkeller, Oct 07 2015
-
Mathematica
a[0] = 1; a[n_] := Sum[MoebiusMu[d]*5^(n/d)/n, {d, Divisors[n]}]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Mar 11 2014 *) mx=40;f[x_,k_]:=1-Sum[MoebiusMu[i] Log[1-k*x^i]/i,{i,1,mx}];CoefficientList[Series[f[x,5],{x,0,mx}],x] (* Herbert Kociemba, Nov 25 2016 *)
-
PARI
a(n)=if(n,sumdiv(n,d,moebius(d)*5^(n/d))/n,1) \\ Charles R Greathouse IV, Jun 15 2011
Formula
a(n) = Sum_{d|n} mu(d)*5^(n/d)/n, for n>0.
G.f.: k=5, 1 - Sum_{i>=1} mu(i)*log(1 - k*x^i)/i. - Herbert Kociemba, Nov 25 2016
Comments