cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001692 Number of irreducible polynomials of degree n over GF(5); dimensions of free Lie algebras.

Original entry on oeis.org

1, 5, 10, 40, 150, 624, 2580, 11160, 48750, 217000, 976248, 4438920, 20343700, 93900240, 435959820, 2034504992, 9536718750, 44878791360, 211927516500, 1003867701480, 4768371093720, 22706531339280
Offset: 0

Views

Author

Keywords

Comments

Exponents in expansion of Hardy-Littlewood constant C_5 = 0.409874885.. = A269843 as a product_{n>=2} zeta(n)^(-a(n)).
Number of aperiodic necklaces with n beads of 5 colors. - Herbert Kociemba, Nov 25 2016

References

  • E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003
  • M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 79.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

5th column of A074650. - Alois P. Heinz, Aug 08 2008

Programs

  • Haskell
    a001692 n = flip div n $ sum $
                zipWith (*) (map a008683 divs) (map a000351 $ reverse divs)
                where divs = a027750_row n
    -- Reinhard Zumkeller, Oct 07 2015
  • Mathematica
    a[0] = 1; a[n_] := Sum[MoebiusMu[d]*5^(n/d)/n, {d, Divisors[n]}]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Mar 11 2014 *)
    mx=40;f[x_,k_]:=1-Sum[MoebiusMu[i] Log[1-k*x^i]/i,{i,1,mx}];CoefficientList[Series[f[x,5],{x,0,mx}],x] (* Herbert Kociemba, Nov 25 2016 *)
  • PARI
    a(n)=if(n,sumdiv(n,d,moebius(d)*5^(n/d))/n,1) \\ Charles R Greathouse IV, Jun 15 2011
    

Formula

a(n) = Sum_{d|n} mu(d)*5^(n/d)/n, for n>0.
G.f.: k=5, 1 - Sum_{i>=1} mu(i)*log(1 - k*x^i)/i. - Herbert Kociemba, Nov 25 2016