A001696 a(n) = a(n-1)*(1 + a(n-1) - a(n-2)), a(0) = 0, a(1) = 1.
0, 1, 2, 4, 12, 108, 10476, 108625644, 11798392680793836, 139202068568601568785946949658348, 19377215893777651167043206536157529523359277782016064519251404524
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- John Cerkan, Table of n, a(n) for n = 0..13
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Index entries for sequences of form a(n+1)=a(n)^2 + ...
Crossrefs
a(n)=A039941(2*n); first difference sequence of this sequence is A001697. - Michael Somos, May 19 2000
Programs
-
Haskell
a001696 n = a001696_list !! n a001696_list = 0 : 1 : zipWith (-) (zipWith (+) a001696_list' $ map (^ 2) a001696_list') (zipWith (*) a001696_list a001696_list') where a001696_list' = tail a001696_list -- Reinhard Zumkeller, Apr 29 2013
-
Mathematica
a[0] = 0; a[1] = 1; a[n_] := a[n] = a[n-1]*(1 + a[n-1] - a[n-2]); Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Jul 02 2013 *)
-
PARI
a(n)=if(n<2,n>0,a(n-1)*(1+a(n-1)-a(n-2)))
Formula
a(n) ~ c^(2^n), where c = 1.15552822483840350150537253088299651035583896919522349372370013726451673646... . - Vaclav Kotesovec, May 21 2015
Comments