A001708 Generalized Stirling numbers.
1, 20, 295, 4025, 54649, 761166, 11028590, 167310220, 2664929476, 44601786944, 784146622896, 14469012689040, 279870212258064, 5667093514231200, 119958395537083104, 2650594302549806976, 61049697873641191296, 1463708634867162093312, 36482312832434713195776
Offset: 0
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliƩs aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 (1962), 1-77.
- Robert E. Moritz, On the sum of products of n consecutive integers, Univ. Washington Publications in Math., 1 (No. 3, 1926), 44-49 [Annotated scanned copy]
Programs
-
Mathematica
With[{nn=20},Drop[CoefficientList[Series[Log[1-x]^4/(24(1-x)^2),{x,0,nn}], x]Range[0,nn]!,4]] (* Harvey P. Dale, Oct 24 2011 *)
-
PARI
my(x='x+O('x^25)); Vec(serlaplace((log(1-x))^4/(24*(1-x)^2))) \\ Michel Marcus, Feb 04 2022
Formula
E.g.f.: ( log ( 1 - x ))^4 / 24 ( 1 - x )^2.
a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(k+4, 4)*2^k*Stirling1(n+4, k+4). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a - j), then a(n-4) = |f(n,4,2)| for n >= 4. - Milan Janjic, Dec 21 2008
Extensions
More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
Comments