A001709 Generalized Stirling numbers.
1, 27, 511, 8624, 140889, 2310945, 38759930, 671189310, 12061579816, 225525484184, 4392554369840, 89142436976320, 1884434077831824, 41471340993035856, 949385215397800224, 22587683825903611680, 557978742043520648256, 14297219701868137003200
Offset: 0
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres reliƩs aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 (1962), 1-77.
- Robert E. Moritz, On the sum of products of n consecutive integers, Univ. Washington Publications in Math., 1 (No. 3, 1926), 44-49 [Annotated scanned copy]
Programs
-
Mathematica
nn = 25; t = Range[0, nn]! CoefficientList[Series[-Log[1 - x]^5/(120*(1 - x)^2), {x, 0, nn}], x]; Drop[t, 5] (* T. D. Noe, Aug 09 2012 *)
-
PARI
a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+5, 5)*2^k*stirling(n+5, k+5, 1)); \\ Michel Marcus, Jan 01 2023
Formula
a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(k+5, 5)*2^k*Stirling1(n+5, k+5). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
E.g.f.: (6-120*log(1-x)+465*log(1-x)^2-580*log(1-x)^3+261*log(1-x)^4-36*log(1-x)^5)/(6*(1-x)^7). - Vladeta Jovovic, Mar 01 2004
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n-5) = |f(n,5,2)|, for n>=5. [From Milan Janjic, Dec 21 2008]
Extensions
More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
Comments