cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001709 Generalized Stirling numbers.

Original entry on oeis.org

1, 27, 511, 8624, 140889, 2310945, 38759930, 671189310, 12061579816, 225525484184, 4392554369840, 89142436976320, 1884434077831824, 41471340993035856, 949385215397800224, 22587683825903611680, 557978742043520648256, 14297219701868137003200
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=6,n=2) ~ exp(-x)/x^6*(1 - 27/x + 511/x^2 - 8624/x^3 + 140889/x^4 - ...) leads to the sequence given above. See A163931 for E(x,m,n) information and A163932 for a Maple procedure for the asymptotic expansion. - Johannes W. Meijer, Oct 20 2009

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    nn = 25; t = Range[0, nn]! CoefficientList[Series[-Log[1 - x]^5/(120*(1 - x)^2), {x, 0, nn}], x]; Drop[t, 5] (* T. D. Noe, Aug 09 2012 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+5, 5)*2^k*stirling(n+5, k+5, 1)); \\ Michel Marcus, Jan 01 2023

Formula

a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(k+5, 5)*2^k*Stirling1(n+5, k+5). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
E.g.f.: (6-120*log(1-x)+465*log(1-x)^2-580*log(1-x)^3+261*log(1-x)^4-36*log(1-x)^5)/(6*(1-x)^7). - Vladeta Jovovic, Mar 01 2004
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n-5) = |f(n,5,2)|, for n>=5. [From Milan Janjic, Dec 21 2008]

Extensions

More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004