A001719 Generalized Stirling numbers.
1, 30, 625, 11515, 203889, 3602088, 64720340, 1194928020, 22800117076, 450996059800, 9262414989464, 197632289814960, 4381123888865424, 100869322905986496, 2410630110159777216, 59757230054773959552, 1535299458203884231296, 40848249256425236795904
Offset: 0
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- D. S. Mitrinovic, M. S. Mitrinovic, Tableaux d'une classe de nombres reliƩs aux nombres de Stirling, Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. 77 (1962).
Programs
-
Mathematica
nn = 24; t = Range[0, nn]! CoefficientList[Series[(Log[1 - x]/(1 - x))^4/24, {x, 0, nn}], x]; Drop[t, 4] (* T. D. Noe, Aug 09 2012 *)
-
PARI
a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+4, 4)*4^k*stirling(n+4, k+4, 1)); \\ Michel Marcus, Jan 20 2016
Formula
E.g.f.: (log(1-x)/(1-x))^4/24. - Vladeta Jovovic, May 05 2003
a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(k+4, 4)*4^k*Stirling1(n+4, k+4). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n-4) = |f(n,4,4)|, for n>=4. - Milan Janjic, Dec 21 2008
Extensions
More terms from Vladeta Jovovic, May 05 2003
Comments