cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001743 Numbers in which every digit contains at least one loop (version 1).

Original entry on oeis.org

0, 6, 8, 9, 60, 66, 68, 69, 80, 86, 88, 89, 90, 96, 98, 99, 600, 606, 608, 609, 660, 666, 668, 669, 680, 686, 688, 689, 690, 696, 698, 699, 800, 806, 808, 809, 860, 866, 868, 869, 880, 886, 888, 889, 890, 896, 898, 899, 900, 906, 908, 909, 960, 966, 968, 969
Offset: 1

Views

Author

Keywords

Comments

See A001744 for the other version.
If n-1 is represented as a base-4 number (see A007090) according to n-1 = d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n) = Sum_{j=0..m} c(d(j))*10^j, where c(k)=0,6,8,9 for k=0..3. - Hieronymus Fischer, May 30 2012

Examples

			a(1000) = 99896.
a(10^4) = 8690099.
a(10^5) = 680688699.
		

Crossrefs

Programs

  • Mathematica
    Union[Flatten[Table[FromDigits/@Tuples[{0,6,8,9},n],{n,3}]]] (* Harvey P. Dale, Sep 04 2013 *)
  • PARI
    is(n) = #setintersect(vecsort(digits(n), , 8), [1, 2, 3, 4, 5, 7])==0 \\ Felix Fröhlich, Sep 09 2019

Formula

From Hieronymus Fischer, May 30 2012: (Start)
a(n) = ((b_m(n)+6) mod 9 + floor((b_m(n)+2)/3) - floor(b_m(n)/3))*10^m + Sum_{j=0..m-1} (b_j(n) mod 4 +5*floor((b_j(n)+3)/4) +floor((b_j(n)+2)/4)- 6*floor(b_j(n)/4)))*10^j, where n>1, b_j(n)) = floor((n-1-4^m)/4^j), m = floor(log_4(n-1)).
a(1*4^n+1) = 6*10^n.
a(2*4^n+1) = 8*10^n.
a(3*4^n+1) = 9*10^n.
a(n) = 6*10^log_4(n-1) for n=4^k+1,
a(n) < 6*10^log_4(n-1), otherwise.
a(n) > 10^log_4(n-1) for n>1.
a(n) = 6*A007090(n-1), iff the digits of A007090(n-1) are 0 or 1.
G.f.: g(x) = (x/(1-x))*Sum_{j>=0} 10^j*x^4^j *(1-x^4^j)* (6 + 8x^4^j + 9(x^2)^4^j)/(1-x^4^(j+1)).
Also: g(x) = (x/(1-x))*(6*h_(4,1)(x) + 2*h_(4,2)(x) + h_(4,3)(x) - 9*h_(4,4)(x)), where h_(4,k)(x) = Sum_{j>=0} 10^j*(x^4^j)^k/(1-(x^4^j)^4). (End)

Extensions

Examples added by Hieronymus Fischer, May 30 2012