cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001744 Numbers n such that every digit contains a loop (version 2).

Original entry on oeis.org

0, 4, 6, 8, 9, 40, 44, 46, 48, 49, 60, 64, 66, 68, 69, 80, 84, 86, 88, 89, 90, 94, 96, 98, 99, 400, 404, 406, 408, 409, 440, 444, 446, 448, 449, 460, 464, 466, 468, 469, 480, 484, 486, 488, 489, 490, 494, 496, 498, 499, 600, 604, 606, 608, 609, 640, 644, 646
Offset: 1

Views

Author

Keywords

Comments

See A001743 for the other version.
If n-1 is represented as a base-5 number (see A007091) according to n-1 = d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n)= Sum_{j=0..m} c(d(j))*10^j, where c(k)=0,4,6,8,9 for k=0..4. - Hieronymus Fischer, May 30 2012

Examples

			a(1000) = 46999.
a(10^4) = 809999.
a(10^5) = 44499999.
a(10^6) = 668999999.
		

Crossrefs

Programs

  • Mathematica
    FromDigits/@Tuples[{0,4,6,8,9},3] (* Harvey P. Dale, Aug 16 2018 *)
  • PARI
    is(n) = #setintersect(vecsort(digits(n), , 8), [1, 2, 3, 5, 7])==0 \\ Felix Fröhlich, Sep 09 2019

Formula

From Hieronymus Fischer, May 30 2012: (Start)
a(n) = ((2*b_m(n)) mod 8 + 4 + floor(b_m(n)/4) - floor((b_m(n)+1)/4))*10^m + sum_{j=0..m-1} ((2*b_j(n))) mod 10 + 2*floor((b_j(n)+4)/5) - floor((b_j(n)+1)/5) -floor(b_j(n)/5)))*10^j, where n>1, b_j(n)) = floor((n-1-5^m)/5^j), m = floor(log_5(n-1)).
a(1*5^n+1) = 4*10^n.
a(2*5^n+1) = 6*10^n.
a(3*5^n+1) = 8*10^n.
a(4*5^n+1) = 9*10^n.
a(n) = 4*10^log_5(n-1) for n=5^k+1,
a(n) < 4*10^log_5(n-1), otherwise.
a(n) > 10^log_5(n-1) n>1.
a(n) = 4*A007091(n-1), iff the digits of A007091(n-1) are 0 or 1.
G.f.: g(x) = (x/(1-x))*sum_{j>=0} 10^j*x^5^j*(1-x^5^j)*(4 + 6x^5^j + 8(x^2)^5^j + 9(x^3)^5^j)/(1-x^5^(j+1)).
Also: g(x) = (x/(1-x))*(4*h_(5,1)(x) + 2*h_(5,2)(x) + 2*h_(5,3)(x) + h_(5,4)(x) - 9*h_(5,5)(x)), where h_(5,k)(x) = sum_{j>=0} 10^j*(x^5^j)^k/(1-(x^5^j)^5). (End)

Extensions

Ambiguous comment deleted by Zak Seidov, May 25 2010
Examples added by Hieronymus Fischer, May 30 2012