A001751 Primes together with primes multiplied by 2.
2, 3, 4, 5, 6, 7, 10, 11, 13, 14, 17, 19, 22, 23, 26, 29, 31, 34, 37, 38, 41, 43, 46, 47, 53, 58, 59, 61, 62, 67, 71, 73, 74, 79, 82, 83, 86, 89, 94, 97, 101, 103, 106, 107, 109, 113, 118, 122, 127, 131, 134, 137, 139, 142, 146, 149, 151, 157, 158, 163, 166
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a001751 n = a001751_list !! (n-1) a001751_list = 2 : filter (\n -> (a010051 $ div n $ gcd 2 n) == 1) [1..] -- Reinhard Zumkeller, Jun 20 2011 (corrected, improved), Dec 17 2010
-
Mathematica
Select[Range[163], Or[PrimeQ[#], PrimeQ[1/2 #]] &] (* Ant King, Jan 29 2011 *) upto=200;With[{pr=Prime[Range[PrimePi[upto]]]},Select[Sort[Join[pr,2pr]],# <= upto&]] (* Harvey P. Dale, Sep 23 2014 *)
-
PARI
isA001751(n)=isprime(n/gcd(n,2)) || n==2
-
PARI
list(lim)=vecsort(concat(primes(primepi(lim)), 2* primes(primepi(lim\2)))) \\ Charles R Greathouse IV, Oct 31 2012
-
Python
from sympy import primepi def A001751(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x-primepi(x)-primepi(x>>1)) return bisection(f,n,n) # Chai Wah Wu, Oct 17 2024
Comments