A001758 Number of quasi-alternating permutations of length n.
0, 2, 12, 58, 300, 1682, 10332, 69298, 505500, 3990362, 33925452, 309248938, 3010070700, 31167995042, 342164637372, 3970297978978, 48558251523900, 624386836023722, 8421511353298092, 118891756573779418, 1753452275441153100, 26967372781086764402
Offset: 2
Examples
G.f. = 2*x^3 + 12*x^4 + 58*x^5 + 300*x^6 + 1682*x^7 + 10332*x^8 + 69298*x^9 + ...
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 261.
- F. N. David and D. E. Barton, Combinatorial Chance, Charles Griffin, 1962.
- E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 113.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 2..100
- Data (data.bnf.fr), Désiré André (1840-1918).
- Désiré André, Sur les permutations alternées, J. Math. Pur. Appl., 7 (1881), 167-184.
- Désiré André, Étude sur les maxima, minima et séquences des permutations, Ann. Sci. Ecole Norm. Sup., 3, no. 1 (1884), 121-135.
- Désiré André, Mémoire sur les permutations quasi-alternées, Journal de mathématiques pures et appliquées 5e série, tome 1 (1895), 315-350.
- Désiré André, Mémoire sur les séquences des permutations circulaires, Bulletin de la S. M. F., tome 23 (1895), pp. 122-184.
- E. Estanave, Sur les coefficients des développements en séries de tang x, séc x et d'autres fonctions. Caractères de périodicité que présentent les chiffres des unités de ces coefficients, Bulletin de la S.M.F., 30 (1902), pp. 220-226. See p. 223.
Crossrefs
Programs
-
Maple
seq(i!*coeff(series((tan(t)+sec(t))^2-4*(tan(t)+sec(t)),t,35),t,i),i=2..24); # Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Mar 12 2001
-
Mathematica
With[{nn=30}, Join[{1}, Drop[CoefficientList[Series[(Tan[x]+Sec[x])^2- 4(Tan[x]+Sec[x]),{x,0,nn}],x] Range[0,nn]!,3]]] (* Harvey P. Dale, Oct 01 2011 *) a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ (u (u - 4) /. u -> Tan[x] + Sec[x]) + 3 + 2 x, {x, 0, n}]]; (* Michael Somos, Oct 24 2015 *) Table[4 Abs[PolyLog[-n-1, I]] - 8 Abs[PolyLog[-n, I]], {n, 2, 23}] (* Jean-François Alcover, Jul 01 2017 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); 2 * n! * polcoeff( 1 + x + (1 - 2 * cos(x + A)) / (1 - sin(x + A)), n))}; /* Michael Somos, Aug 28 2012 */
-
PARI
x='x+O('x^99); concat(0, Vec(serlaplace(2*(1+x+(1-2*cos(x))/(1-sin(x)))))) \\ Altug Alkan, Jul 01 2017
Formula
E.g.f.: 3 + 2*x + u(x)^2 - 4*u(x) where u(x) = tan(x) + sec(x). - Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Mar 12 2001
E.g.f.: 2 * (1 + x + (1 - 2*cos(x)) / (1 - sin(x))). - Michael Somos, Aug 28 2012
Asymptotics: a(n) ~ 8*(2/Pi)^(n+1)*((n+1)/Pi-1)*n!.
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Feb 01 2001
Edited by N. J. A. Sloane, Aug 27 2012
Comments