cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001768 Sorting numbers: number of comparisons for merge insertion sort of n elements.

Original entry on oeis.org

0, 1, 3, 5, 7, 10, 13, 16, 19, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 177, 183, 189, 195, 201, 207, 213, 219, 225, 231, 237, 243, 249, 255
Offset: 1

Views

Author

Keywords

References

  • D. E. Knuth, Art of Computer Programming, Vol. 3, Sect. 5.3.1.
  • T. A. J. Nicholson, A method for optimizing permutation problems and its industrial applications, pp. 201-217 of D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a001768 n = n * (z - 1) - (2 ^ (z + 2) - 3 * z) `div` 6
       where z = a085423 $ n + 1
    -- Reinhard Zumkeller, Mar 16 2013  after David W. Wilson's formula.
  • Maple
    Digits := 60: A001768 := proc(n) local k; add( ceil( log(3*k/4)/log(2) ), k=1..n); end;
    # second Maple program:
    b:= proc(n) option remember; ceil(log[2](3*n/4)) end:
    a:= proc(n) option remember; `if`(n<1, 0, a(n-1)+b(n)) end:
    seq(a(n), n=1..61);  # Alois P. Heinz, Dec 03 2019
  • Mathematica
    Accumulate[Ceiling[Log[2,(3*Range[60])/4]]] (* Harvey P. Dale, Oct 30 2013 *)
  • PARI
    a(n)=ceil(log(3/4*n)/log(2)) \\ Charles R Greathouse IV, Nov 04 2011
    

Formula

a(n) = Sum_{k=1..n} ceiling(log_2 (3k/4)). See also Problem 5.3.1-14 of Knuth.
a(n) = n(z-1)-[(2^(z+2)-3z)/6] where z = [log_2(3n+3)]. - David W. Wilson, Feb 26 2006

Extensions

Name clarified by Li-yao Xia, Nov 18 2015