A001771 Numbers k such that 7*2^k - 1 is prime.
1, 5, 9, 17, 21, 29, 45, 177, 18381, 22529, 24557, 26109, 34857, 41957, 67421, 70209, 169085, 173489, 177977, 363929, 372897
Offset: 1
References
- H. Riesel, "Prime numbers and computer methods for factorization", Progress in Mathematics, Vol. 57, Birkhäuser, Boston, 1985, Chap. 4, see pp. 381-384.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Wilfrid Keller, List of primes k.2^n - 1 for k < 300
- H. C. Williams and C. R. Zarnke, A report on prime numbers of the forms M = (6a+1)*2^(2m-1)-1 and (6a-1)*2^(2m)-1, Math. Comp., 22 (1968), 420-422.
- Index entries for sequences of n such that k*2^n-1 (or k*2^n+1) is prime
Crossrefs
Programs
-
Mathematica
Do[ If[ PrimeQ[7*2^n - 1], Print[n]], {n, 1, 2500}]
-
PARI
v=[ ]; for(n=0,2000, if(isprime(7*2^n-1),v=concat(v,n),)); v
Extensions
More terms from Douglas Burke (dburke(AT)nevada.edu).
More terms from Hugo Pfoertner, Jun 23 2004
Comments