cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001781 Expansion of 1/((1+x)*(1-x)^10).

Original entry on oeis.org

1, 9, 46, 174, 541, 1461, 3544, 7896, 16414, 32206, 60172, 107788, 186142, 311278, 505912, 801592, 1241383, 1883167, 2803658, 4103242, 5911763, 8395387, 11764688, 16284112, 22282988, 30168268, 40439192, 53704088, 70699532, 92312108, 119603024, 153835856, 196507709, 249384101
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000582.
Tenth column of A112465.

Programs

  • Magma
    [1/2903040*(2*n+11) *(2*n^8 +88*n^7 +1616*n^6 +16060*n^5 +93656*n^4 +324808*n^3 +646236*n^2 +663894*n +263655)+(-1)^n/1024  : n in [0..30]]; // Vincenzo Librandi, Oct 08 2011
    
  • Magma
    R:=PowerSeriesRing(Integers(), 50);
    Coefficients(R!( 1/((1+x)*(1-x)^10) )); // G. C. Greubel, Apr 20 2025
    
  • Maple
    A001781 := proc(n) 1/2903040*(2*n+11) *(2*n^8 +88*n^7 +1616*n^6 +16060*n^5 +93656*n^4 +324808*n^3 +646236*n^2 +663894*n +263655)+(-1)^n/1024 ; end proc:
    seq(A001781(n),n=0..50) ; # R. J. Mathar, Mar 22 2011
  • PARI
    Vec(1/(1+x)/(1-x)^10+O(x^99)) \\ Charles R Greathouse IV, Apr 18 2012
    
  • SageMath
    def A001781_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1+x)*(1-x)^10) ).list()
    print(A001781_list(50)) # G. C. Greubel, Apr 20 2025

Formula

a(n) = +9*a(n-1) -35*a(n-2) +75*a(n-3) -90*a(n-4) +42*a(n-5) +42*a(n-6) -90*a(n-7) +75*a(n-8) -35*a(n-9) +9*a(n-10) -a(n-11). - R. J. Mathar, Mar 22 2011
a(n) + a(n+1) = A000582(n+10). - R. J. Mathar, Jan 06 2021