cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001786 Expansion of 1/((1+x)*(1-x)^11).

Original entry on oeis.org

1, 10, 56, 230, 771, 2232, 5776, 13672, 30086, 62292, 122464, 230252, 416394, 727672, 1233584, 2035176, 3276559, 5159726, 7963384, 12066626, 17978389, 26373776, 38138464, 54422576, 76705564, 106873832, 147313024, 201017112, 271716644, 364028752, 483631776, 637467632, 833975341
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A001780, A158454 (signed column k=5).
Eleventh column of A112465.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50);
    Coefficients(R!( 1/((1+x)*(1-x)^11) )); // G. C. Greubel, Apr 20 2025
    
  • Mathematica
    CoefficientList[Series[1/((1+x)(1-x)^11),{x,0,50}],x] (* Vincenzo Librandi, Feb 24 2012 *)
    LinearRecurrence[{10,-44,110,-165,132,0,-132,165,-110,44,-10,1},{1,10,56,230,771,2232, 5776,13672,30086,62292,122464,230252},30] (* Harvey P. Dale, Oct 22 2015 *)
  • SageMath
    def A001786_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1+x)*(1-x)^11) ).list()
    print(A001786_list(50)) # G. C. Greubel, Apr 20 2025

Formula

Boas-Buck recurrence: a(n) = (1/n)*Sum_{p=0..n-1} (11 + (-1)^(n-p))*a(p), n >= 1, a(0) = 1. See the Boas-Buck comment in A046521 (here for the unsigned column k = 5 with offset 0). - Wolfdieter Lang, Aug 10 2017